검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study identifies the possibility of alignment discrepancies during mortar firing when using inactive fuzes, which make it impossible to visually observe impact points. To address this issue, we studied a quality assurance method for Sight Alignment after firing. To establish a baseline, we analyzed the pre-firing Sight Alignment and the impact group status during firing for 00 mortars and 000 shells. Based on this analysis, we derived the alignment position information range after firing for 36 mortars, distinguishing between 68% and 95% confidence interval. Finally, considering data characteristics, inspection time requirements, and non-conforming data, we selected the Sight Alignment range after firing based on the 95% confidence interval. This study is expected to contribute to the development of quality assurance methods for munitions by serving as an example of quality assurance in the mass production stage of mortars.
        4,000원
        2.
        2024.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study is to deal with a failure phenomenon that occurred during a vibration test on an Inertial Navigation System mounted on a self-propelled howitzer. Vibration occurs naturally due to the operation characteristics of self-propelled howitzers, The study describes a case of failure that occurred during the durability verification process. It explains the function and configuration of the INS(Inertial Navigation System) and describe how the failure occurred through understanding the phenomenon. Based on the occurrence phenomenon, an in-depth cause analysis was conducted and fundamental improvement measures were presented to prevent recurrence. It is expected that this study will aid as a reference for problem solving when similar failures occur in the future.
        4,000원
        3.
        2024.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this paper, the cause of mortar baseplate breakage was analyzed by diving into cross-section, material, process, and design aspects. As a result of observing the fracture surface and non-fracture suface using optical equipment, it was possible to confirm changes in the shape of disconnected line and metal surface at a specific area. In addition, a number of linear defects due to overlap were found. Flow analysis was performed using the Deform program to verify changes during the production process. According to the result, a drop test was performed on each of the lap detection baseplate, undetection baseplate, and removed product to verify the presumptive cause of the rupture of the poplite.
        4,000원
        4.
        2023.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This paper is a study on the malfunction that occurred during the power supply logic of the Gunner Display Device during Mortar Functional Firing under low temperature conditions. As a result of the phenomenon reproduction test and its analysis, the cause of the malfunction of the Gunner Display Device was Glitch, which occurred in the process of converting the image signal, and the improved software was applied to the Gunner's Display System by ignoring some of the image signal conversion process that causes Glitch. The improved Gunner Display Device passed the validity test and applied the improvement to the mortars. As a result of this study, several suggestions for power supply and control logic were proposed. It is expected that this study will be used as a reference in the future design of similar weapons systems.
        4,000원
        5.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Combat vehicles were developed in two types depending on the purpose of operation. The body of the vehicle is relatively large welded structure, and there is a quality problem in that welding deformation occurs in a certain area. Welding deformation is a problem that is inevitably generated during the welding process, and additional corrective work is performed. However, due to the structural characteristics of the welded structure of combat vehicl, there are many limitations in the correction method, which lowered the productivity. To improve this problem, we intend to establish improvement measures through analysis of the areas where welding deformation occurs and apply corrective measures suitable for welding structures of combat vehicles. For the design improvement plans, the finite element analysis were used and the correction method were applied to simulated structure to confirm the possibility. Finally, the improvement effect was confirmed by manufacturing the actual welded structure. Based on the results of this study, it is expected that the productivity of related similar welding structures as well as structures of wheeled armored vehicles, can be improved.
        4,000원