Since rice is the main food in Korea, there are no regulations on corn milling yet. Corn is known as one of the world's top three food crops along with wheat and rice, and it is known that 3.5 billion people worldwide use corn for food. In addition, corn mills are not developed or sold in Korea, but the use of corn mills is increasing significantly in many countries in Southeast Asia. In the Philippines, as Korea's rice mill import increases, Korea's KAMICO (Korea Agricultural Machinery Industry Cooperative) and domestic company A agreed to develop a corn mill jointly with PHilMech, an organization affiliated with the Philippine Ministry of Agriculture. However, research on corn milling was very insignificant, so the development was carried out based on the technology of Korea's rice mill. Rice milling is performed by peeling off the skin of rice and producing brown or white rice, so it is carried out by removing the skin and cutting the skin. On the other hand, in the corn mill, the skin of the corn is peeled, pulverized and selected to produce main products suitable for edible use. Therefore, in order to develop a corn mill, processes such as peeling, transfer, grinding, sorting, and by-product separation are required, and suitable parts must be developed. In addition, the performance must be gradually improved through experiments in which corn is repeatedly milled. The Philippines produces 7.98 million tons/year of corn, which is about 100 times that of Korea, and is mostly consumed as a staple food. This is about 10% of the total crop production in the Philippines. In addition, the main cultivation complexes of corn are the mountainous regions of Tarlac or Pangasinan, and the produced corn is 72.4% of the so-called yellow corn called Arabel and Sarangani, and the remaining 27.6% are known as white corn. In this study, it was intended to produce grains of 2.5 mm or less suitable for food for yellow corn and to develop a corn mill for 200 kg per hour. Detailed conditions for development are stipulated as more than 55% of the main product recovery rate, more than 31% of the by-product recovery rate, less than 5% of the raw material loss rate, and more than 80% of the embryo dislocation rate. In this study, to achieve this, the overall process of the corn mill was developed, and the optimal conditions for the corn mill were obtained through the development of parts and empirical tests to improve performance. In addition, it was intended to achieve the development goal by evaluating and analyzing the performance of each part so that it did not conflict.
The building which are essential for disaster recovery is classified as a special seismic use group. Especially, achievement of seismic performance is very important for the hospital, so the hospital should be able to maintain its function during and right after an earthquake without significant damage on both structural and non-structural elements. Therefore, this study aimed at checking the seismic performance of a hospital building, but which was limited to structural elements. For the goal, a plan with a configuration of general hospitals in Korea was selected and designed by two different seismic-force-resisting systems. In analytical modeling, the shear behavior of the wall was represented by three inelastic properties as well as elastic. Nonlinear dynamic analyses were conducted to evaluate the performance of structural members. The result showed that the performance of shear walls in the hospital buildings was not satisfied regardless of the seismic-force-resisting systems, while the demands on the beams and columns did not exceed the capacities. This is the result of only considering the shear of the wall as the force-controlled action. When the shear of the wall was modeled as inelastic, the walls were yielded in shear, and as the result, the demands for frames were increased. However, the increase did not exceed the capacities of the frames members. Consequently, since the performance of walls is significant to determine the seismic performance of a hospital building, it will be essential to establish a definite method of modeling shear behavior of walls and judging their performance.