검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2023.11 구독 인증기관·개인회원 무료
        The HADES (High-level rAdiowaste Disposal Evaluation Simulator) was developed by the Nuclear Fuel Cycle & Nonproliferation (NFC) laboratory at Seoul National University (SNU), based on the MOOSE Framework developed by the Idaho National Laboratory (INL). As an application of the MOOSE Framework, the HADES incorporates not only basic MOOSE functions, such as multi-physics analysis using Finite Element Method (FEM) and various solvers, but also additional functions for estimating the performance assessment of Deep Geological Repositories (DGR). However, since the MOOSE Framework does not have complex mesh generation and data analyzing capabilities, the HADES has been developed to incorporate these missing functions. In this study, although the Gmsh, finite element mesh generation software, and Paraview, finite element analysis software, were used, other applications can be utilized as well. The objectives of HADES are as follows: (i) assessment of the performance of a Spent Nuclear Fuel (SNF) disposal system concerning Thermal-Hydraulic-Mechanical-Chemical (THMC) aspects; (ii) Evaluation of the integrity of the Engineered Barrier System (EBS) of both general and high-efficiency design perspective; (iii) Collaboration with other researchers to evaluate the disposal system using an open-source approach. To achieve these objectives, performance assessments of the various disposal systems and BMTs (BenchMark Test), conducted as part of the DECOVALEX projects, were studied regarding TH behavior. Additionally, integrity assessments of various DGR systems based on thermal criteria were carried out. According to the results, HADES showed very reasonable results, such as evolutions and distributions of temperature and degree of saturation, when compared to validated code such as TOUGH-FLAC, ROCMAS, and OGS (OpenGeoSys). The calculated data are within the range of estimated results from existed code. Furthermore, the first version of the code, which can estimate the TH behavior, has been prepared to share the contents using Git software, a free and open-source distribution system.
        2.
        2023.05 구독 인증기관·개인회원 무료
        Chemical environments of near-field (Engineered barrier and surrounded host rock) can influence performance of a deep geological repository. The chemical environments of near-field change as time evolves eventually reaching a steady state. During the construction of a deep geological repository, O2 will be introduced to the deep geological repository. The O2 can cause corrosion of Cu canisters, and it is important predicting remaining O2 concentration in the near-field. The remaining O2 concentration in the near field can be governed by the following two reactions: oxidation of Cu(I) from oxidation of Cu and oxidation of pyrite in bentonite and backfill materials. These oxidation reactions (Cu(I) and pyrite oxidation) can influence the performance of the deep geological repository in two ways; the first way is consuming oxidizing agents (O2) and the second way is the changing pH in the near-field and ultimately influencing on the mass transport rate of radionuclides from spent nuclear fuel (failure of canisters) to out of the engineered barrier. Hence, it is very important to know the evolution of chemical environments of near-field by the oxidation of pyrite and Cu. However, the oxidation kinetics of pyrite and Cu are different in the order of 1E7 which means the overall kinetics cannot be fully considered in the deep geological repository. Therefore, it is important to develop a simplified Cu and pyrite oxidation kinetics model based on deep geological repository conditions. Herein, eight oxidation reactions for the chemical species Cu(I) were considered to extract a simplified kinetic equation. Also, a simplified kinetics equation was used for pyrite oxidation. For future analysis, simplified chemical reactions should be combined with a Multiphysics Cu corrosion model to predict the overall lifetime of Cu canisters.
        3.
        2022.10 구독 인증기관·개인회원 무료
        Corrosion products generated from the oxidation of structure materials are deposited on the surface of coolant systems, forming CRUD (Corrosion Related Unidentified Deposits). The CRUD deposition on the fuel surface has influenced the heat transfer through the fuel rod. When CRUD was deposited on a fuel surface, heat resistance may increase, and this increase in heat resistance leads to the increase in temperature distribution from cladding to coolant. Also, the temperature distribution is related to the radiolytic and chemical reactions within the CRUD deposits. This influence may be enough to change the pH distribution within the CRUD deposits. To estimate the influence of thermal resistance, the composition, microstructure, and vapor fraction within the CRUD should be considered, by investigating the thermal conductivity model of CRUD deposits. Therefore, in this study, the CRUD thermal conductivity was studied through the literature study, by considering composition, capillary flow characteristics, and vapor fraction. For the uncertainty parameters, a sensitivity study was conducted to check the degree of influence on thermal conductivity. The effective thermal conductivity was applied to the radiochemistry model within the CRUD deposits and an analysis of the influence in radiolysis reaction within the CRUD deposits with a fixed thickness.