검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 16

        2.
        2023.11 구독 인증기관·개인회원 무료
        For safe and economical spent fuel management, assessing the integrity of the cladding, which is the first barrier to the escape of radioactive material, is very important. For the sake of risk assessment, it is essential to calculate the probability of failure of the spent fuel rods loaded inside the cask during the transportation or storage. However, due to the large amounts of calculations required, it is not practical to analyze every detail of the spent fuel rods and assemblies. This study presents a methodology to perform a cask-level analysis by sequentially simplifying the fuel rods and spent fuel assemblies for the calculation of fuel rod failure probability. A simplified single fuel rod model was generated by considering the material properties of a high burnup fuel rod stored in dry storage for approximately 5 years and the interfacial bonding conditions of the cladding tube. The simplified model produces the same deflection as the detailed model at the critical moment that produces a fracture plastic strain of 1%. The developed single fuel rod simplified model is assembled in a CE 16×16 configuration, and a methodology is presented in which the CE 16×16 assembly model is once again replaced by a simplified model with a cuboidal shape. Compression analyses were performed on each part of the CE 16×16 model to obtain isotropic property data, and a simplified model was created based on those data and the cross-sectional second moment values of the parts. A cask drop analysis was performed to validate the similarity of the CE 16×16 model and the simplified model by comparing important structural responses such as impact acceleration. The 20 simplified fuel assembly models and one detailed model were loaded into a cask to perform the drop analysis. For the detailed model, the impact acceleration was extracted for different loading positions and the corresponding impact load and pinch load were derived. The spring force and contact force corresponding to the pinch load were extracted by applying a Python script technique to extract the maximum value of them exerted on each fuel rod. The vulnerability of spent fuel rods to bending loads and the failure criteria were considered during the simplification process of a single fuel rod. From the extracted impact and pinch loads, the probability of failure of the spent fuel rods as a function of impact acceleration can be calculated.
        3.
        2023.11 구독 인증기관·개인회원 무료
        The Spent Nuclear Fuel (SNF) cladding serves as the first barrier that prevents the release of radioactive materials. It is very important to maintain cladding integrity in SNF management. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a numerical analysis process was proposed to scientifically and systematically evaluate the fracture resistance of cladding with reoriented hydrides under pinch load. The mechanical behavior and fracture of the irradiated cladding under pinch load can be evaluated by Ring Compression Test (RCT). Under the stress field generated by RCT, the cracks propagate more easily through radial hydrides than circumferential hydrides. The δ-hydride which form within the α-zirconium matrix causes a large expansion strain due to the volume difference and voids form at the interface between the hydride and the zirconium matrix. Chan demonstrated that the load needed to form voids and separate the hard hydride precipitates from the Zr matrix is considerably lower than that which initiates brittle fracture of hydrides using a micro-cantilever test. Therefore, we propose a microstructure crack propagation analysis method based on Continuum Damage Mechanics (CDM) that can simulate fracture of hydride, zirconium matrix, and Zr/hydride interface. CDM is possible to simulate the hydride, zirconium matrix, and interface cracking in a continuum model based on cladding deformation. The RCT simulation model was constructed from the microscopic images of irradiated cladding. A pixel-based finite element model was created by separating the hydride, zirconium matrix, and interface using the image segmentation method on a morphology operation basis. The appropriate element size was selected for the efficiency of the analysis and crack propagation using CDM. The force-displacement curves and strain energy from RCT were compared and analyzed with the simulation results of different element sizes. The finalized RCT simulation model can be used to evaluate the fracture resistance of the irradiated cladding under the quantified pinch load and to establish the failure criterion of fuel rods under pinch load. The advantages and limitations of the proposed process are discussed.
        4.
        2023.05 구독 인증기관·개인회원 무료
        The damage ratio of Spent Nuclear Fuel (SNF) is a very important intermediate variable for dry storage risk assessment which require an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can lead to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, a sensitivity analysis was performed to evaluate the importance of the damage parameters that need to be calibrated for the simulation of zircaloy-4 cladding failure using computational mechanics. The simulation model was generated from a microscopic image of the cladding with hydride. The image segmentation method was used to separate the Zircaloy-4, hydride, and hydride- Zircaloy matrix interfaces to create a pixel-based finite element model. The ring compression test (RCT) was simulated because the resistance of the cladding under pinch load can be evaluated by this test. It was assumed that the damage starts with the formation and growth of voids or small cracks in the material, which grow and combine to form larger cracks, eventually leading to the complete fracture of the material. Therefore, the ductile damage criterion was applied to all materials to simulate crack formation and propagation. The sensitivity analysis was performed based on the design of experiments using L8 orthogonal array. The effects of five factors on the fracture resistance of hydrided cladding were quantified, and they are the fracture strains describing the damage initiation in zircaloy-4 matrix, hydride, and hydride-zirconium matrix, and yield stress and Young’s modulus for hydride-zirconium matrix. Information on those parameters are hardly available in literature and experimental data which enable the estimation of those are also very rare. It is planned to build a computational model which can accurately simulate the fracture behavior of hydrided cladding by calibrating significant fracture parameters using reverse engineering. The results of this study will help to figure out those significant parameters.
        5.
        2022.05 구독 인증기관·개인회원 무료
        Barrier effect model developed by CRIEPI is used for the estimation of rate of radioactive material release from a transport cask submerged in the ocean. If the containment boundary of cask is broken in an accident during maritime transportation, the sea water comes into the cask cavity and the leaching of radioactive material occurs. If the release of radioactive material thorough the opening of the containment boundary of cask is less than the leaching rate of the radioactive material inside the cask, then the release rate is controlled by the saturation limit of the sea water inside the cask cavity. In this study, the release rate estimation using the barrier effect model is compared with the model used in other codes, such as MARINRAD. And by parameter study, important factors that affect the releaser rate are identified and prioritized. It is shown that the gap generated in the containment boundary is the key parameter that determine the release rate of the radioactive material and the leaching rate is the dominant parameter to determine the saturation time of the cavity sea water.
        6.
        2022.05 구독 인증기관·개인회원 무료
        For economic and safe management of Spent Nuclear Fuel (SNF), it is very important to maintain the structural integrity of SNF and to keep the fuel undamaged and handleable. The cladding surrounding nuclear fuel must be protected from physical and mechanical deterioration. The structural evaluation of SNF is very complicated and numerically demanding and it is essential to develop a simplified model for the fuel rod. In this study, a simplified model was developed using a new cladding failure criterion. The simplified model was developed considering only the horizontal or lateral static load utilizing the cladding material properties of irradiated Zirclaoy-4, and applicability in horizontal and vertical drop impacts was investigated. When a fuel rod is subject to bending, a very complicated 3D stress state is generated within the vicinity of the pellet–pellet interface. A very localized stress concentration is observed in the area where the edges of the pellets contact the cladding. If the failure strain criteria obtained from the uniaxial tension test or biaxial tube test is applied, failure is predicted at the beginning stage of loading with premature through-thickness stress or strain development. The localized contact stress or strain is self-limiting and is not a good candidate for the cladding failure criteria. In this work, a new cladding failure criterion is proposed, which can account for the localized stress concentration and the through-thickness stress development. The failure of the cladding is determined by the membrane plus bending stress generated through the thickness of the cladding, which can be calculated by a process called stress linearization along the stress classification line. The failure criterion for SNF was selected as the membrane plus bending stress through stress linearization in the cross-sections through the thickness of the cladding. Because the stress concentration in the cladding around the vicinity of the pellet–pellet interface cannot be simulated in a simplified beam model, a stress correction factor is derived through a comparison of the simplified model and detailed model. The applicability of the developed simplified model is checked through horizontal and vertical drop impact simulations. It is shown that the stress correction factor derived considering static bending loading can be effectively applied to the dynamic impact analyses in both horizontal and vertical orientations.
        7.
        2022.05 구독 인증기관·개인회원 무료
        The evaluation of the damage ratio of spent nuclear fuel is a very important intermediate variable for dry storage risk assessment, which requires an interdisciplinary and comprehensive investigation. It is known that the pinch load applied to the cladding can leaded to Mode-3 failure and the cladding becomes more vulnerable to this failure mode with the existence of radial hydrides and other forms of mechanical defects. In this study, the failure resistance of Zircaloy-4 cladding against the pinch load is investigated using numerical simulations assuming the existence of radial hydrides. The simulation model is based on the microscopic images of cladding. A pixel-based finite element model was created by separating the Zircaloy-4 and hydride using the image segmentation method. The image segmentation method uses a morphology operation basis, which is a preprocessing method through erosion operation after image expansion to enable normal segmentation by emphasizing pixels corresponding to hydrides. The segmented images are converted into a finite element model by assigning node and element numbers together with corresponding material properties. Using the generated hydride cladding finite element model, several numerical methods are investigated to simulate crack propagation and cladding failure under pinch load. Using extended finite element (XFEM) models the initiation and propagation of a discrete crack along an arbitrary, solution-dependent path can be simulated without the requirement of remeshing. The applicability of fracture mechanical parameters such as stress intensity, J-integral was also investigated.
        11.
        2018.03 구독 인증기관 무료, 개인회원 유료
        Radiotherapy (RT) is a mainstay in the treatment of head and neck squamous cell carcinoma (HNSCC). For locally advanced HCSCC, concurrent chemoradiotherapy (CCRT) benefits HCSCC patients in terms of better survival and loco-regional control. In this study, we evaluated changes in oral microbiota in patients, who received CCRT for head and neck cancer. Oral rinsed samples were weekly collected before and during CCRT and at 4 weeks following treatment from HNSCC patients, who had received 70 Gy of radiation delivered to the primary sites for over 7 weeks and concurrent chemotherapy. Oral microbiota changes in three patients were analyzed by next-generation sequencing using 16S rRNA 454 pyrosequencing. On an average, 15,000 partial 16S rRNA gene sequences were obtained from each sample. All sequences fell into 11 different bacterial phyla. During early CCRT, the microbial diversity gradually decreased. In a patient, who did not receive any antibiotics during the CCRT, Firmicutes and Proteobacteria were the most abundant phylum. During the early CCRT, proteobacteria gradually decreased while Firmicutes increased. During the late CCRT, firmicutes gradually decreased while Bacteroides and Fusobacteria increased. In all the patients, yellow complex showed a gradual decrease, while orange and red complex showed a gradual increase during the CCRT. At 4 weeks after CCRT, the recovery of oral microbiota diversity was limited. During CCRT, there was a gradual increase in major periodontopathogens in association with the deterioration of the oral hygiene. Henceforth, it is proposed that understanding oral microbiota shift should provide better information for the development of effective oral care programs for patients receiving CCRT for HNSCC.
        4,000원
        12.
        2016.12 구독 인증기관 무료, 개인회원 유료
        Interleukin-1b (IL-1β), a proinflammatory cytokine, regulates the innate immune responses against bacterial infection. Mature IL-1β is produced from pro-IL-1β by activated caspase-1, which in turn is activated by the inflammasome complex formation. In this study, we compared the inflammasome mRNA expression induced by S. sanguinis, S. oralis, F. nucleatum and P. intermedia. Among the tested bacteria, S. sanguinis induced the highest IL-1β secretion. S. oralis, F. nucleatum and P. intermedia induced very weak IL-1β secretion. S. sanguinis mostly induced the NLRP3 mRNA expressions. Although F. nucleatum did not induce high IL-1β secretion, it induced high expression levels of AIM2, NLRP2, and NLRP3. No specific inflammasomes were induced by S. oralis and P.intermedia. Studying the inflammasome complex activation induced by oral bacteria may thus enhance our understanding of the pathogenesis of oral diseases.
        4,000원
        13.
        2016.03 구독 인증기관 무료, 개인회원 유료
        Rutin (3,3′,4′,5,7-pentahydroxyflavone-3-rhamnoglucoside) is a bioactive flavonoid from the plant kingdom. Rutin has been studied as potential anticancer agent due to its wide range of pharmacological properties including antioxidative, anti-inflammatory and anticancer. Autophagy is a conserved intracellular catabolic pathway to maintain cell homeostasis by formation of autophagosome. Processing of autophagy involves various molecules including ULK1 protein kinase complex, Beclin-1–Vps34 lipid kinase complex, ATG5, ATG12, and LC3 (light chain 3). Cargo-carried autophagosomes fuse with lysosomes resulting in autophagolysosome to eliminate vesicles and degrade cargo. However, the actions of rutin on autophagy are not clearly understood. In this study, we analyzed the effect of rutin on autophagy and inflammation in cancer cell lines. Interestingly, rutin induced autophagy in leukemia (THP-1), oral (CA9-22), and lung (A549) cell lines. TNF-α, key modulator of inflammation, was upregulated by inhibition of rutin-induced autophagy. Taken together, these data indicated that rutin induced autophagy and consequently suppressed TNF-α production.
        4,000원
        14.
        2014.03 구독 인증기관 무료, 개인회원 유료
        Aggregatibacter actinomycetemcomitans is an important pathogen in the development of localized aggressive periodontitis. Lipopolysaccharide (LPS) is a virulent factor of periodontal pathogens that contributes to alveolar bone loss and connective tissue degradation in periodontal disease. Our present study was designed to investigate the cytokine expression and signaling pathways regulated by A. actinomycetemcomitans LPS (Aa LPS). Cytokine gene expression profiling in RAW 264.7 cells was performed by microarray analyses. The cytokine mRNA and protein levels and related signaling pathways induced by Aa LPS were measured by RT-PCR, ELISA and western blotting. Microarray results showed that Aa LPS strongly induced the expression of NF-κB, NF-κB-related genes, inflammatory cytokines, TNF-α and IL-1β in RAW 264.7 cells. NF-κB inhibitor pretreatment significantly reduced the levels of TNF-α and IL-1β mRNA and protein. In addition, the Aa LPS-induced TNF-α and IL-1β expression was inhibited by p38/JNK MAP kinase inhibitor pretreatment. These results show that Aa LPS stimulates TNF-α and IL-1β expression through NF-κB and p38/JNK activation in RAW 264.7 cells, suggesting the essential role of this pathway in the pathogenesis of localized aggressive periodontitis.
        4,000원
        15.
        2013.12 구독 인증기관 무료, 개인회원 유료
        The presence of distinct bacterial species is found to be dependent on age, diet, and disease. We compared the detection rate of several oral bacterial strains in a cohort of 36 subjects including healthy volunteers, periodontal patients, and oral cancer patients. Gargling samples were obtained from these subjects from which DNA was then extracted. Specific primers for 29 bacterial species were used for PCR detection. In the oral cancer patients, Capnocytophaga ochracea, Gemella morbillorum, and Streptococcus salivarius were detected more frequently compared with the healthy volunteers and periodontitis patients. Fusobacterium nucleatum/ polymorphym and Prevotella nigrescens were significantly less prevalent in oral cancer patients than the other groups. In periodontitis patients, Porphyromonas gingivalis and Treponema denticola were more frequently found compared with the healthy volunteers. In the healthy volunteer group, Peptostreptococcus anaerobius was more frequently found than the other groups. The detection rate of several oral bacterial species was thus found to differ between healthy volunteers, periodontitis patients and oral cancer patients.
        4,000원
        16.
        2013.12 구독 인증기관 무료, 개인회원 유료
        Xylitol is a five-carbon sugar alcohol that reduces the incidence of caries by inhibiting the growth of oral streptococci, including Streptococcus mutans. Since xylitol is transported via the fructose phosphotransferase system, we hypothesized that it could also affect the growth of other oral bacteria strains. We tested the effects of xylitol against non-periodontopathogenic oral bacteria frequently found in healthy subjects as well as periodontopathogens including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. With 5% xylitol, Streptococcus vestibularis and Gemella morbillorum showed marked growth inhibition. With 10% xylitol, all of the tested periodontopathogens and Actinomyces naeslundii showed marked growth inhibition, whereas the growth inhibition of Neisseria mucosa, Neisseria sicca and Veillonella parvula was mild only. Xylitol is a widely used sweetener and the concentration used in our experiment is easily achieved in the oral cavity. If xylitol reduces the growth of periodontopathogens more preferentially, it could also reduce the prevalence of these pathogens and have clinical utility in the prevention or treatment of periodontal disease.
        4,000원