We report our research on aluminum mirror optics for future infrared astronomical satellites. For space infrared missions, cooling the whole instrument is crucial to suppress the infrared background and detector noise. In this aspect, aluminum is appropriate for cryogenic optics, because the same material can be used for the whole structure of the instrument including optical components thanks to its excellent machinability, which helps to mitigate optical misalignment at low temperatures. We have fabricated alu- minum mirrors with ultra-precision machining and measured the wave front errors (WFEs) of the mirrors with a Fizeau interferometer. Based on the power spectral densities of the WFEs, we conrmed that the surface accuracy of all the mirrors satised the requirements for the SPICA Coronagraph Instrument. We then integrated the mirrors into an optical system, and examined the image quality of the system with an optical laser. As a result, the total WFE is estimated to be 33 nm (rms) from the Strehl ratio. This is consistent with the WFEs estimated from the measurement of the individual mirrors.
In order to obtain spherical fine powder, we have developed a new method of high-pressure water atomization system using swirl water jet with the swirl angle . The effect of nozzle apex angle upon the morphology of atomized powders was investigated. Molten copper was atomized by this method, with rad (swirl water jet) and rad (conical water jet). It was found that the median diameter of atomized powders decreased with decreasing down to 0.35 rad in each , but under θ<0.35 rad, increased abruptly with decreasing for rad, while it was still decreased with decreasing for rad.