검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2021.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Deep convolutional network is a deep learning approach to optimize image recognition. This study aimed to apply DCNN to the reading of mandibular cortical thinning in digital panoramic radiographs. Digital panoramic radiographs of 1,268 female dental patients (age 45.2 ± 21.1yrs) were used in the reading of the mandibular cortical bone by two maxillofacial radiologists. Among the subjects, 535 normal subject’s panoramic radiographs (age 28.6 ±7.4 yrs) and 533 those of osteoporosis pationts (age 72.1 ± 8.7 yrs) with mandibular cortical thinning were used for training DCNN. In the testing of mandibular cortical thinning, 100 panoramic radiographs of normal subjects (age 26.6 ± 4.5 yrs) and 100 mandibular cortical thinning (age 72.5 ± 7.2 yrs) were used. The sensitive area of DCNN to mandibular cortical thinning was investigated by occluding analysis. The readings of DCNN were compared by two maxillofacial radiologists. DCNN showed 97.5% accuracy, 96% sensitivity, and 99% specificity in reading mandibular cortical thinning. DCNN was sensitively responded on the cancellous and cortical bone of the mandibular inferior area. DCNN was effective in diagnosing mandibular cortical thinning.
        4,000원
        2.
        2021.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Artificial intelligence, has been applied in interpreting osteoporosis on dental panoramic radiograph with high accuracy. The purpose of this study was to investigate the sensitive area of convolutional neural network(CNN), one of artificial intelligence, in interpreting osteoporosis on dental panoramic radiograph. Dental panoramic radiographs taken from 1,170 female (49.19 ±21.91 average age, 21 minimum age, and 84 maximum age) were selected for this study. Two oral maxillofacial radiologists agreed upon interpreting osteoporosis by interpreting mandibular inferior cortical changes. The region of interest included upper and lower jaws for training and testing CNN in interpreting osteoporosis. A filter which was set to look for image characteristics moved through the entire panoramic radiography to identify sensitive areas that distinguish normal groups and osteoporosis patients. In interpreting osteoporosis on panoramic radiograph, CNN responded sensitively at the cancellous bone of the upper and lower jaws while oral maxillofacial radiologists interpreted mandibular inferior cortical change.
        4,000원
        3.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted as part of a series of studies to introduce the Convolutional Neural Network(CNN) into the diagnostic field of osteoporosis. The purpose of this study was to compare the results when testing Digital Radiography(DR) and Computed Radiography(CR) panoramic radiographs by CNN that were trained by DR panoramic radiographs. The digital panoramic radiographs of females who visited for the purpose of diagnosis and treatment at Chonnam National University Dental Hospital were taken. Two Oral and Maxillofacial Radiologists were selected for the study to compare the panoramic radiographs with normal and osteoporosis images. Among them, 1068 panoramic radiographs of females{Mean [± standard deviation] age: 49.19 ± 21.91 years} obtained by DR method were used for training of CNN. 200 panoramic radiographs of females{Mean [± standard deviation] age: 63.95 ± 6.45 years} obtained by DR method and 202 panoramic radiographs of females{Mean [± standard deviation] age: 62.00 ± 6.86 years} obtained by CR method were used for testing of CNN. When the DR panoramic radiographs were tested, the Accuracy was 92.5%. When the CR panoramic radiographs were tested, the Accuracy was 76.2%. It can be seen that the CNN trained by DR panoramic radiographs is suitable to be tested with the same DR panoramic radiographs.
        4,000원
        4.
        2019.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study aimed to test a convolutional neural network (CNN) in two different settings of training and testing data. Panoramic radiographs were selected from 1170 female dental patients (mean age 49.19 ± 21.91 yr). The cortical bone of the mandible inferior border was evaluated for osteoporosis or normal condition on the panoramic radiographs. Among them, 586 patients (mean age 27.46 ± 6.73 yr) had normal condition, and osteoporosis was interpreted on 584 patients (mean age 71.00 ± 7.64 yr). Among them, one data set of 569 normal patients (mean age 26.61 ± 4.60 yr) and 502 osteoporosis patients (mean age 72.37 ± 7.10 yr) was used for training CNN, and the other data set of 17 normal patients (mean age 55.94 ± 4.0 yr) and 82 osteoporosis patients (mean age 62.60 ± 5.00 yr) for testing CNN in the first experiment, while the latter was used for training CNN and the former for testing CNN in the second experiment. The error rate was 15.15% in the first experiment and 5.14% in the second experiment. This study suggests that age-matched training data make more accurate testing results.
        4,000원