Derived Concentration Guideline Levels (DCGLs), which represent the residual radioactivity concentration limits, serve as the pivotal criteria for decontamination during decommissioning of nuclear power plants and are essential for license termination. The analysis of radionuclides in various media to check site-specific and radionuclide-specific DCGLs is a resource-intensive and time-consuming processes, and there are some radionuclides that are hard to analyze. In the decommissioning of the Rancho Seco nuclear power plant in the United States, a conservative approach was adopted. Potentially highly contaminated areas on the site were identified by collecting and analyzing soil samples, and radionuclides exceeding the Minimum Detectable Concentration (MDC) were selected as the potential Radionuclide of Concern (ROC), and surrogate DCGLs for hard-to-detect radionuclides were applied to soil samples. For soil samples in the Rancho Seco nuclear power plant, Cs-137 contributed more than 90% of the total radioactivity. DCGLs of the ROC were obtained using the scaling factors through analysis of Cs- 137 for a large amount of soil samples. In Korea, the scaling factor methodology has not been applied to the decommissioning of commercial nuclear power plants. An initial investigation was undertaken to assess the viability of implementing Surrogate Derived Concentration Guideline Levels (DCGLs) in the dismantling of Kori Unit 1, drawing insights from the U.S. nuclear power plant decommissioning experiences. To do this approach, the concentration ratio of radionuclides of interest to key radionuclide in contaminated soil should be known and consistent. But related information is not available at this time. So Surrogate DCGL for representative C-14, Fe-55, Ni-59, Ni-63, and Sr-90 was obtained using the scaling factors applied to radioactive waste data, specifically Decontaminated Aqueous Waste (DAW) and Spent Resin. In order to develop a reliable surrogate DCGLs the Kori Unit 1 site, it is important to analyze the radionuclides in the soil for the Kori Unit 1 decommissioning site to obtain consistent concentration ratio of the radionuclides of concern to the key radionuclides. When a the suitable DCGL is developed, it can be used for FSS planning and prior decision-making ensuring the safe and effective decommissioning of Kori Unit 1 and similar nuclear power plants.
This study presents a methodology to determine the radionuclides of concern that are expected to be found during the final status survey of Kori Unit 1 decommissioning. The methodology involved reflecting the evaluation results of ORIGEN based on reference documents such as NUREG/CR-3474, NUREG/CR-4289, NUREG/CR-0130, WINCO-1191, and representative fuel loading. A list of potential radionuclides of concern was provided by reflecting the list of radionuclides of concern included in the Kori Unit 1 decommissioning plan. To select the radionuclides of concern, we analyzed the approach of US decommissioning plants based on the recommendations of NUREG-1757 Vol.2 Rev.1 and excluded certain radionuclides from the list. The final list of 23 radionuclides of concern was derived by excluding radionuclides that have a short half-life, low specific activity, analytically difficult to measure, inert gases, or naturally occurring radionuclides. This methodology can be applied to other nuclear power plants, such as the Wolsong Nuclear Power Plant, by reflecting the unique characteristics of the reactor.
월성 원자력 발전소의 TRF 시설에서 수집된 트리튬을 metal hydride 형태로 보관하고 있는 500 kCi급 트리튬 1차 저장용기를 발전소 밖의 폐기물 저장고로 안전하게 운반하기 위하여 트리튬 운반용기를 개발하였다. B형 운반용기의 기술기준을 적용하여 구조평가, 열평가, 방사선차폐평가, 격납평가 등을 수행하여 운반용기의 안전성을 분석하였다. 트리튬 운반용기는 정상운반조건 및 사고운반조건에서도 격납 경계가 손상되지 않는다고 평가되었다. 붕괴열로 인한 운반용기 내부 저장용기의 온도상승은 수치해석 결과, 원통형 모델에서는 로 나타났다. 운반사고 조건에 대한 열 평가로서 외부환경에 30분간 노출되었을 경우에는 단열재만의 열차폐를 고려하여 계산한 결과, 약 로 나타났으며, 내부 온도 상승은 1차 격납 경계인 1차 저장용기의 허용 온도인 에도 미치지 못하였다. 격납 차폐 평가에서도 사고조건인 의 외부 환경에 노출된 경우에서도 충분히 운반용기의 격납 성능을 유지할 수 있다고 판단되었다. 방사선에 대한 차폐 특성을 조사한 결과, 트리튬에서 발생된 선량은 1차 저장용기 외부 표면에서 0으로 계산되었다. 이상과 같이 500 kCi 급 트리튬 운반용기에 대한 안전성을 평가한 결과, 운반사고조건에서도 트리튬 운반용기는 전혀 이상이 없는 것으로 나타났다.