The mobility of radionuclides in the subsurface environment is governed by a interaction of radioactivity characteristics and geochemical conditions with adsorption reactions playing a critical role. This study investigates the characteristics and mechanisms of radionuclides adsorption on site media in viewpoint of nuclear safety, particularly focusing on the potential effect of seawater infiltration in coastal site near nuclear power plant. Seawater intrusion alters the chemistry in groundwater, including parameters such as pH, redox potential, and ionic strength, thereby affecting the behavior of radionuclides. To assess the safety of site near nuclear power plant and the environmental implications of nuclide leakage, this research conducted various experiments to evaluate the behavior of radionuclides in the subsurface environment. High distribution coefficients (50-2,500 ml/g) were observed at 10 mg/L Co, with montmorillonite > hydrobiotite > illite > kaolinite. It decreased with competing cations (Ca2+) and was found to decrease significantly by 90% with a decrease in pH to 4. It is believed that the adsorption capacity of cationic radionuclides decreases significantly as the clay mineral surface becomes less negatively charged. For Cs, the distribution coefficient (180-560 ml/g) was higher for montmorillonite > hydrobiotite > illite > kaolinite. Compared to Co, it was found to be less influenced by pH and more influenced by competing cations. For Sr, the distribution coefficient (100-380 ml/g) was higher in the order of hydrobiotite > montmorillonite > illite > kaolinite. Compared to Cs, it was found to be less affected by pH and also less affected by the effect of competing cations compared to Cs. Seawater samples from Gampo and Uljin site near Nuclear Power Plant in Korea were analyzed to determine their chemical composition, which was subsequently used in adsorption experiments. Additionally, the seawater-infiltrated groundwater was synthesized in laboratory according to previous literature. The study focused on the adsorption and behavior of three key radionuclides such as cesium, strontium, and cobalt onto four low permeability media (clay minerals) such as kaolinite, illite, hydrobiotite, and montmorillonite known for their high adsorption capacity at a site of nuclear power plant. At concentrations of 5 and 10 mg/L, the adsorption coefficients followed the order of cobalt > cesium > strontium for each radionuclide. Notably, the distribution coefficient (Kd) values exhibited higher values in seawater-infiltrated groundwater environments compared to seawater with relatively high ionic strength. Cobalt exhibited a substantial adsorption coefficient, with a marked decrease in Kd values in seawater conditions due to elevated ionic strength. In contrast, cesium displayed less dependency on seawater compared to other radionuclides, suggesting distinct adsorption mechanisms, possibly involving fractured edge sites (FES) in clay. Strontium exhibited a significant reduction in adsorption in seawater compared to groundwater in all Kd sorption experiments. The adsorption data of cobalt, cesium, and strontium on clay minerals in contact with seawater and seawater-infiltrated solutions offer valuable insights for assessing radioactive contamination of groundwater beneath coastal site near nuclear power plant sites. This research provides a foundation for enhancing the safety assessment protocols of nuclear power plant sites, considering the potential effects of seawater infiltration on radionuclide behavior in the subsurface environment.
The dynastid beetle Allomyrina dichotoma has been used as a herbal medicine. Recently, we performed de novo RNAsequencing of Allomyrina dichotoma and identified several antimicrobial peptide candidates based on in silico analysis.Among them, cationic antimicrobial peptide, Allomyrinasin, was selected and we assessed the anti-inflammatory activitiesof Allomyrinasin against mouse macrophage Raw264.7 cells. The results showed that Allomyrinasin decreased the nitricoxide production of the lipopolysaccharide-induced Raw264.7 cells. In addition, quantitative RT-PCR, ELISA and Westernblot analysis revealed that Allomyrinasin reduced cytokine expression levels in the Raw264.7 cells. Taken together, thesedata indicated that Allomyrinasin had anti-inflammatory activity in the lipopolysaccharide-induced Raw264.7 cells.
Although the grasshopper Oxya chinensis sinuosa has long been used as a food in Korea, there is little data on itsfunctional effects. Thus we prepared and analyzed total RNA from the whole body of adult Escherichia coli non-immunizedand immunized Oxya chinensis sinuosa strains. Using an Illumina Hiseq sequencer, we generated a total of 66,555 pooledtranscriptome and singletons with and without Escherichia coli immunization, respectively. Then, we performed in silicoanalysis of the Oxya chinensis sinuosa transcriptome, using bioinformatics tools for screening putative antimicrobial peptides(AMPs) and 38 AMPs were finally selected and tested their antimicrobial activity of Gram positive, Gram negative bacteriaand antifungal activity with radial diffusion assay. As a result, 5 out of 38 AMPs showed the highest antimicrobial activityand antifungal activity against microbes and it also evidenced with no hemolytic activity.
The Y generation born between 1981 and 1995 is the largest consumer group in the United States. This study is to provide an insight of understanding Y generation’s decision factors of purchasing Jeans and the fit issues. This study investigated their purchasing decisions factors, including fit, cost, brand, color, and the media/internet influences. It is revealed that the Y generation might have access to the internet, but they still rely more on their peers and savvy skills to decide what they purchase. They preferred to shop from the land based retail stores rather than the internet. The fit was the most important factor of their purchasing decision, but less concerns of the brand. In this study, 87% of them chose “fit” as the reason to buy a pair of jeans. Fit problems were related to the price category. This study suggests apparel manufacturers should understand Y generation’s fit issues in the global market.
This study investigated the effect of NH4 + concentrations on microalgae growth by appling mixotrophic microalgae chlorella vulgaris in order to treat anaerobic digested food waste leachate. The growth rate and final microalgae growth were an order as 400 > 100 > 800 > 1300 mg-N/L. As results, The growth rate and final growth of microalgae were highest at ammonia concentration of 400 mg-N/L, On the other hand microalgae growth was inhibited when ammonia concentrations were over 800 mg-N/L. high concentrations of nitrogen over 800 mg-N/L interrupt the growth of microalgae. All of nitrogen and phosphorus were removed by microalgae at the ammonia concentration of 100~400 mg-N/L. In addition, when ammonia concentration was over 800 mg-N/L, the removal of nitrogen and phosphorus was limited mainly due to the microalgae growth limit. It was possible to treat anaerobic digested food waste leachate with mixotrophic microalgae when the ammonia concentration was controlled below 400 mg-N/L.
This study investigated the semi-continuous and continuous cultivation of microalgae-sludge for artificial digested food wastes leachate treatment, and the effect of hydraulic retention times(HRT) on microalgae growth and nutrient removal. In this study, two reactors were examined the HRTs from 4 to 1 day, the Chlorella vulgaris cell density of semi-continuous and continuous cultivation reached a maximum value at HRT 3 day, then decreasing HRT to 2 day and 1 day the Chlorella vulgaris cell density was decreased. The maximum Chlorella vulgaris cell density in semi-continuous cultivation was 1.4 times higher than continuous cultivation. The maximum NH4-N, PO4-P removal efficiency was 100%, 75.7% with HRT of 3 day in semi-continuous cultivation, while 96.5%, 65.7% with HRT of 4 day in continuous cultivation. These results indicate that semi-continuous cultivation is more suitable than continuous cultivation. And the effect of increased light intensity from 100 μmol/m²/s to 400 μmol/m²/s was also evaluated, as the result, increased light intensity improved Chlorella vulgaris cell growth and nutrient removal.