본 연구는 페튜니아(Petunia×hybrida)의 내건성 증진을 위 해 스트레스 메모리 기작을 활용한 프라이밍 처리의 효과를 구명 하고자 하였다. 건조-회복 과정을 통한 프라이밍 처리를 4회 반복 수행하였고, 두 가지 프라이밍 강도(Priming1:물 100mL, Priming2: 물 50mL 관수 후 건조)를 적용한 후 5일 동안 건조스 트레스 조건에서 내성 증진 효과를 관찰하였다. 프라이밍 강도가 높은 Priming2 처리구에서 대조군에 비해 수명이 약 25시간 연장되었다. 이는 페튜니아가 스트레스 메모리 기작을 통해 건조 스트레스에 대한 내성을 높일 수 있음을 보여준다. 본 연구는 정원 식물의 환경 스트레스 내성을 증진시키기 위한 프라이밍 기술의 유용성을 확인하였으며, 향후 다양한 환경 스트레스 조건 에서의 프라이밍 효과를 평가함으로써 화훼식물의 내건성 증진 에 대한 실용적 기술 개발에 기여할 수 있을 것으로 기대된다.
Ethylene-responsive factors (ERFs) are important plant transcription factors (TFs) that regulate plant responses against various abiotic stresses. However, little information of ERF genes involved in abiotic stress is available in petunia (Petunia ×hybrida). In this study, a petunia ERF gene, PhERF039, was cloned and functional analysis was performed. The quantitative PCR analysis revealed that PhERF039 was induced at the early stage of water deficit stress. Under-expression of PhERF039 (UE) exhibited rosette growth habit, higher number of branches, and delayed flowering compared to the wild type (WT). The UE petunia was evaluated under various volumetric water contents (θ): 0.25, 0.15, 0.10, or 0.05 m3·m-3 using an automated irrigation system. Transgenic plants did not delay plant wilting, but the θ for UE reached to the set point later than that for WT. A lower stomatal conductance was observed in UE than WT under all treatments. These results suggested that PhERF039 could be involved in plant responses under water deficit by regulating stomatal movements as well as branching pattern and flower development.
In this study, in order to develop a method to efficiently inject essential nutrients necessary for plant growth into wood chips, which are simply used as soil covering materials in the agriculture, landscaping and horticultural industries, the atmospheric pressure dipping method and the vacuum pressure impregnating method are used to improve the plant nutrients injectability and impregnation amount were comparatively analyzed. Nutrient ingredients and 8 major heavy metal contents of wood chips injected with nutrients were analyzed, and soil covering effects were examined by covering wood chips injected with nutrients on soil. Comparing the dipping method and the vacuum pressure impregnation method, it took about 48 hours or more to inject 1,500 g or more of the nutrient aqueous solution into 1 kg of wood chips in the dipping method, but the vacuum pressure impregnation method could be impregnated in about 5 minutes. Components of the impregnated nutrients were detected in proportion to the diluted concentration. As a result of covering the wood chips developed in this study on soil, they showed weakly acidic pH, and the heat insulation and moisturizing effects during the winter season were evaluated to be superior to those of uncovered soil. In the future, wood chips impregnated with nutrients are expected to contribute to the more efficient use of waste wood resources and the long-term supply of nutrients essential for plant growth, reducing excessive use of chemical fertilizers and reducing costs.