This work was conducted to assess the use of Near-infrared reflectance spectroscopy (NIRS) as a technique to analyze nutritional constituents of Distillers dried grain with solubles (DDGS) and corn quickly and accurately, and to apply an NIRS-based indium gallium arsenide array detector, rather than a NIRS-based scanning system, to collect spectra and induce and analyze calibration equations using equipment which is better suited to field application. As a technique to induce calibration equations, Partial Least Squares (PLS) was used, and for better accuracy, various mathematical transformations were applied. A multivariate outlier detection method was applied to induce calibration equations, and, as a result, the way of structuring a calibration set significantly affected prediction accuracy. The prediction of nutritional constituents of distillers dried grains with solubles resulted in the following: moisture (R2=0.80), crude protein (R2=0.71), crude fat (R2=0.80), crude fiber (R2=0.32), and crude ash (R2=0.72). All constituents except crude fiber showed good results. The prediction of nutritional constituents of corn resulted in the following: moisture (R2=0.79), crude protein (R2=0.61), crude fat (R2=0.79), crude fiber (R2=0.63), and crude ash (R2=0.75). Therefore, all constituents except for crude fat and crude fiber were predicted for their chemical composition of DDGS and corn through Near-infrared reflectance spectroscopy.
Panax ginseng C.A. meyer (family: Araliaceae) is a perennial crop that has been widely used as a traditional medicine in Korea. Various P. ginseng cultivars exhibit a range of morphological and physiological traits as well as genetic diversity. To elucidate the differences of primary metabolism underlying such genetic diverstiy, we performed primary metabolite profiles in adventitious roots from five Panax ginseng cultivars using gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis revealed eight primary metabolites as biomarkers and allowed us to classify the five cultivars into three groups. We selected three cultivars to represent each group and analyzed their transcriptomes by Illumina sequencing. We inspected 100 unigenes involved in seven primary metabolite biosynthesis pathways and found that 21 unigenes encoding 15 enzymes were differentially expressed among the three cultivars. Integrated analysis of transcriptomes and metabolomes revealed that the ginseng cultivars differ in primary metabolites as well as in the putative genes involved in the complex process of primary metabolic pathways. Our data derived from this integrated analysis provide insights into the underlying complexity of genes and metabolites that co-regulate flux through these pathways in ginseng.
Carotenoids are vital pigments responsible for yellow, orange and red color in plants. In Capsicum, capsanthin-capsorubin synthase (CCS), phytoene synthase (PSY), β-Carotene hydroxylase (CRTZ-2) and lycopene β-cyclase (LCYB) were identified to be involved in the carotenoids synthesis pathway. Previously molecular markers based on the CCS and PSY genes have been developed to distinguish fruit colors in pepper. However these markers can distinguish fruit colors of limited pepper genotypes. Therefore, there is need of developing additional markers for accurate prediction of fruit colors using molecular markers. In this study carotenoids contents of 16 pepper accessions were analyzed and the CCS, PSY, CRTZ-2, LCYB genes were sequenced to identify the genes affecting the fruit color. Among all the analyzed carotenoids, capsanthin was accumulated in much higher amount in red and orange fruits (1100-2500 mAU·min and 30-500 mAU·min respectively) while violaxanthin (20-1200 mAU·min) was accumulated more in yellow fruits. Sequence analysis revealed that deletions and two frame shift mutations in CCS gene for yellow accessions. Frame shift mutations of the PSY gene were detected in two orange accessions. These results show that mutations in CCS and PSY genes affect the fruit colors of pepper, and markers can be developed using mutations of these genes.
Panax Ginseng is a perennial medicinal plant originated from North-east asia. Because of its well-known tonic effects mainly from ginsenosides, various types of processed ginseng products have been distributed around the world. Here, we analyzed secondary metabolite profiling of adventitious roots of 5 korean ginseng cultivars, Chunpoong (CP), Sunhyang (SH), Gopoong (GO), Sunun (SU), and Cheongsun (CS). At the same time, the profiles of relative gene expressions related to ginsenoside biosynthesis pathway were compared among ginseng cultivars. Secondary metabolite profiles were revealed by UPLC/Q-TOF-MS from extracts of bioreactor derived adventitious roots of five ginseng cultivars. Using principal component analysis, secondary metabolite profiles of ginseng cultivars were categorized into three groups. Metabolites with high VIP values were annotated using known database and standards compounds. Relative gene expression of ginsenoside related gene were analyzed using realtime PCR. The three groups had distinct metabolite contents. Furthermore, gene expression profiles related to ginsenoside were also different, which might contribute diverse secondary metabolite composition of ginseng cultivars. Further integrated analysis would provide a relationship between genetic background of ginseng cultivars and secondary metabolite profiles.