Afoxolaner is an insecticide and acaricide that belongs to the isoxazoline chemical compound group. it has been used as an active pharmaceutical ingrdient in veterinary medicine to treat fleas and ticks in dogs. When patents expire between 2026 and 2066, it is expected that many products will be applied for approval as generic products, and reserch to establish accurate quality control methods must be conducted and managed. HPLC method was developed for the quantitative and qualitative of afoxolaner in veterinary medicinal products. The separation of active constituents for afoxolaner was achieved on a RP18 (4.6 x 150 mm, 5 μm) column using Water : Acetonitrile : MeOH (25:30:45 v/v/v) as mobile phase, with UV detection at 245 nm. The method was validated for specificity, linearity, accuracy and precision. All calibration curves showed good linearity (R2 of 0.999) within the concentration ranges (12.5 to 400 μg/mL). For accuracy, the recovery rate was calculated by spiking three concentrations of standard into the sample blank. The recovery rate was calculated to be 99.70~100.58%. Precision was measured 9 times repeatedly through intra-day, inter-day tests using standard. It showed excellent precision by satisfying the relative standard deviation of less than 2% both intra-day and inter-day. Limit of detection (LOD) and limit of quantitation (LOQ) were 2.0 μg/mL and 6.1 μg/mL, respectively. This method was successfully applied to analyzing afoxolaner drugs distributed in Korea. The HPLC method described in this study is accurate and reproducible and could be applied for the analysis of veterinary drugs of afoxolaner.
Stroke incidence is increasing accordance with the aging of the population. While stroke patients increases the survival rate due to the contemporary development of medicine, goes on increasing the chronic disease by muscle impairment called hemiplegia. Rehabilitation training of motor skills for hemiplegia patients comprises repetitive and passive contents. In this paper, we developed a movement recognition device using acceleration sensor to help the upper limb rehabilitation and functional game contents in order to reduce the boredom of rehabilitation. By this contents, we can be maximized effect of the exercise using rehabilitation training contents made by simple graphical resources and added fun. Later on, we will provide various contents that can use several platform interface and can be have a lot of fun exercise and spread the range of applications of functional game contents.