The aged asphalt binder included in RAP due to the oxidative aging, repeated vehicle load, climate process affects to the recycled asphalt mixture property and performance (stripping, port hole and premature cracking initiation) after paving. The rejuvenator commonly is used to recover the aged binder in hot mix asphalt (HMA) containing RAP; the effect of rejuvenator in HMA had been proven according to many studies for over the past several decades. Also, there are many methods for using RAP in asphalt mixture in aspects of HMA, cold asphalt mixture (CMA) and worm mix asphalt mixture (WMA), and a foamed asphalt mixture is one of them. Employing the foamed asphalt manufacturing technology, the content of RAP in recycled asphalt mixture can be increased more. The objectives of this study are to evaluate of rejuvenator influence on foamed asphalt mixture using 100% RAP based on strength change of test sample and stiffness change of recovered binder from RAP and specimen. As the results, when rejuvenator was added to make foamed asphalt mixture, MS and ITS values decreased clearly as compared with the foamed asphalt mixture without rejuvenator use. The use of rejuvenator up to 6% showed a tendency of the decrease of strength and stability remarkably. The use of rejuvenator over 6% did not decrease the strength and stability. DSR test results, the use of rejuvenator in making a foamed asphalt mixture using 100% RAP showed a recovery effect of the foamed asphalt mixture. And recovered binder from the specimen that was made adding the 6, 12 and 18% rejuvenator showed lower stiffness obviously compared to the recovered binder from RAP adding same dosage of rejuvenator.
It is well known fact that the filed asphalt mixture is aged in the truck while hauling and queuing for one to four hours before dumping to the hopper of the paver. This aging, which is called short-term aging (STA), affect the physical and mechanical properties of asphalt mixture. For example, the maximum theoretical density of mixture is changed before and after STA. Therefore, when the asphalt mixture specimen is prepared for testing various physical and mechanical properties in laboratory, the mixture should be STA conditioned by a most-likely STA condition of the field. This is the reason why the STA should be performed properly. This study initiated to investigate STA conditioning protocols, set forth many agencies in the world, and to suggest a proper STA protocol which simulates field HMA condition as most likely as possible. According to this study, it was suggested that the blended loose mix for one specimen poured in a canister should be kept in a drying oven (no forced draft) without cap at 163±2℃ and for 70±15 min for normal HMA mix. This protocol was suggested based on that the absolute viscosity level of the recovered binder after STA should be a similar level of the same binder after a standard RTFO run.