검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 6

        1.
        2010.10 구독 인증기관·개인회원 무료
        The black soldier fly (BSF), Hermetia illucens, is known as a beneficial insect and feeds on organic materials derived from animals and human, resulting in reduction of food waste and conversion of organic materials. Despite of many studies on the BSF, there have been no reports of cloned genes encoding serine proteases in the BSF. Thus, the primary objective of this study is to clone and to investigate expression pattern of genes encoding serine proteases released from the midgut of the BSF larvae in order to gain a better understanding of expression mechanism of serine proteases. We cloned two serine proteases from the BSF larva. Based on phylogenetic tree analysis, one was chymotrypsin, the other was trypsin. The open reading frame (ORF) of chymotrypsin was 804bp, which encoded a polypeptide of 267 amino acids. In case of trypsin, the ORF was 744bp, which encoded a polypeptide of 247 amino acids. To investigate expression pattern of two serine proteases, we conducted semi-quantitative RT-PCR at different tissues and different developmental stages. A chymotrypsin and trypsin transcripts were revealed strongly in mid gut. Especially, a chymotrypsin was detected largely at feeding stage more than molting stage, while trypsin was expressed similarly between feeding stage and molting stage
        2.
        2010.05 구독 인증기관·개인회원 무료
        The black soldier fly (BSF), Hermetia illucens, is known as a beneficial insect and feeds on organic materials derived from animals and human, resulting in reduction of food waste and conversion of organic materials. Despite of a lot of study about the BSF, there is a less information about composition of digestive enzyme of the BSF larva. Experimentally, there is no evidence about characterization of digestive enzyme of the BSF. We investigated biochemical property of digestive enzyme released from the salivary and gut of the BSF. Through digestive enzyme assay, we found that the BSF has amylase, lipase and protease activity in gut extracts, resulting in that the BSF belong to polyphagous insect group. In the BSF gut, trypsin-like protease activity showed one peak at various temperature and pH condition. This result means the BSF has probably a similar form of trypsin-like enzymes. On study of comparison of enzyme activity between the BSF and the housefly using the apiZYM kit, the BSF had more strongly digestive enzyme activity than one of the housefly about leucine arylamidase, alpha-galactosidase, beta-galactosidase, alpha-mannosidase and alpha-fucosidase. This finding supports that the BSF can ingest raw waste far more efficiently than any other known species of fly as reported previously.
        3.
        2010.05 구독 인증기관·개인회원 무료
        Taxonomic resolution of the Nosema/Vairimorpah clade has been augmented with DNA sequences of the small subunit (SSU) and large subunit (LSU) ribosomal RNA (rRNA) and the arrangement of SSU and LSU. Based on the two characteristics, the clade is largely divided into two, i.e. 'true' Nosema sub-group and 'non-true' Nosema sub-group within the clade. Our study shows that a novel Nosema species isolated from Pieris rapae has mixed characteristics of the 'true' and non 'true' Nosema sub-group based on the topology of SSU and LSU sequences, and rRNA of the isolate is normally organized. Additionally, the length of ITS can be a diagnostic tool to distinguish 'true' Nosema from non 'true' Nosema in the Nosema/Vairimorpha clade based on its nucleotide length as reported before. To our knowledge, this is the first report of recombination event in the Nosema/Vairimorpha clade.
        4.
        2009.05 구독 인증기관·개인회원 무료
        Local and seasonal populations of the oriental fruit moth, Grapholita molesta, were monitored with sex pheromone trapping and RAPD (random amplified polymorphic DNA) molecular marker to analyze their movement in apple orchards. To detect their movements among farms, pheromone traps were placed at regions between apple farms ('outside-farms') as well as within-farms ('inside-farms'). Four seasonal adult peaks were evident in apple-cultivating fields from April to October in both trappings of inside- or outside-farms. After overwintering generation, populations of inside-farms were significantly reduced with frequent insecticide applications, compared to populations of outside-farms. Within apple farms, G. molesta tended to be unevenly distributed because of significant sublocal preference. Active movements of local and seasonal populations of G. molesta were supported by gene flow analysis using RAPD marker. Monitoring data using sex pheromone and seasonal reduction in initial genetic differentiation detected in the overwintering populations suggest that there must be significant movement of G. molesta among different orchards in apple-cultivating areas.
        5.
        2009.05 구독 인증기관·개인회원 무료
        An endoparasitoid wasp, Cotesia plutellae, parasitizes larvae of the diamondback moth, Plutella xylostella, with its symbiotic polydnavirus, C. plutellae bracovirus (CpBV). This study analyzed the role of Inhibitor-kB (IkB)-like genes encoded in CpBV in suppressing host antiviral and antimicrobial responses. Identified eight CpBV-IkBs are scattered on different viral genome segments and showed high homologies with other bracoviral IkBs in their amino acid sequences. Compared to an insect ortholog (e.g., Cactus of Drosophila melanogaster), they possessed a shorter ankyrin repeat domain without any regulatory domains. The eight CpBV-IkBs are, however, different in their promoter components and expression patterns in the parasitized host. To test their inhibitory activity on host antiviral response, a midgut response of P. xylostella against baculovirus infection was used as a model reaction. When the larvae were orally fed the virus, they exhibited melanotic responses of midgut epithelium, which increased with baculovirus dose and incubation time. Parasitized larvae exhibited a significant reduction in the midgut melanotic response, compared to nonparasitized larvae. Micro-injection of each of the four CpBV genome segments containing CpBV-IkBs into the hemocoel of nonparasitized larvae showed the gene expressions of the encoded IkBs and suppressed the midgut melanotic response in response to the baculovirus treatment. When nonparasitized larvae were orally administered with a recombinant baculovirus containing CpBV-IkB, they showed a significant reduction in midgut melanotic response and an enhanced susceptibility to the baculovirus infectivity. The transiently expressed CpBV-IkB3 inhibited expression of hemolin, but did not those of lysozyme and cecropin in P. xylostella, while both lysozyme and cecropin were inhibited in the treated Spodoptera exigua. When the recombinant AcNPV was mixed with Bacillus thuringiensis subsp. kurstaki (Bt), the bacterial pathogenicity was significantly enhanced in a dose-dependent manner, compared to a Bt mixture with an AcMNPV recombined with an enhanced green fluorescence protein gene.
        6.
        2008.05 구독 인증기관·개인회원 무료
        The diamondback moth, Plutella xylostella, is reluctant to a baculovirus, Autographa california nucleopolyhedrosis virus (AcNPV) at its oral administration. However, parasitization by an endoparasitoid wasp, Cotesia plutellae, enhances the viral susceptibility. This study analyzed an antiviral activity of P. xylostella in response to the viral infection and determined the parasitic factor inhibiting the antiviral mechanism. For the analysis of antiviral activity of P. xylostella, a recombinant AcNPV expressing enhanced green fluorescence (AcNPV-EGFP) was orally adminstered to lavae of P. xylostella. After 24 h, EGFP expression was observed in the midgut tissue at a confocal-FITC mode. At the same time, a characteristic midgut melanotic response (MMR) was observed in some midgut regions under a phase contrast microscope. Thereafter, the EGFP signal was attenuated, while MMR spread on most midgut region. When the MMR was scored from 0 to 5 by the intensity of melanized cell density, it increased in time- and dose-dependent manners at the viral administration per os. These results suggest that the MMR is an antiviral activity of P. xylostella. This antiviral activity was significantly attenuated by C. plutellae parasitism. The parasitized P. xylostella showed significant decrease in the MMR score compared to nonparasitized larvae when they were orally administered with the same dose of AcNPV. To determine the parasitic factor(s) inhibiting the antiviral activity from the symbiotic polydnavirus of C. plutellae (C. plutellae bracovirus: CpBV), CpBV-IkB, which is a viral homolog of NFkB inhibitor and has been considered as an antiviral factor as in other polydnaviruses, was tested. A recombinant AcNPV expressing CpBV-IkB (AcNPV-IkB) was constructed and administered to P. xylostella larvae. As expected, AcNPV-IkB significantly decreased the antiviral activity measured by the MMR score compared to AcNPV-EGFP treatment. This study suggests that CpBV-IkB plays an antiviral parasitic role in the molecular interactions between P. xylostella and C. plutellae.