검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2022.05 구독 인증기관·개인회원 무료
        The design of nuclear fuel storage and handling area includes the activities related to the storage and inspection before fuel loading, transfer into the reactor, removal of irradiated fuel to the spent fuel storage rack, underwater handling and storage, and handling into a shipping cask. The purpose of this study is to provide the design requirements for the spent fuel pool to be prevented from the loss of cooling water and for heavy load control to prevent any load drop resulting in damage to safetyrelated systems during heavy load handling in accordance with the regulatory guidelines. And another purpose is to review the sizing of minimum wet storage capacity in the spent fuel pool based on the maximum refueling batch from the core during refueling plus a full core off-load of fuel assemblies and the minimum discharge burnup spent fuel storage during the design life of plant requested by the utility. As the results of this study, the current general arrangement for the spent fuel storage and handling area and the minimum storage capacity are evaluated. These can be good recommendations to enhance more safe and efficient if implemented to the new nuclear power plants.
        2.
        2022.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        This study provides technical information about the nuclear fuel handling process, which consists of various subprocesses starting from new fuel receipt to spent fuel shipment at a nuclear power plant and the design requirements of fuel handling equipment. The fuel handling system is an integrated system of equipment, tools, and procedures that allow refueling, handling and storage of fuel assemblies, which comprise the fuel handling process. The understanding and reaffirming of detailed code requirements are requested for application to the design of the fuel handling and storage facility. We reviewed the design requirements of the fuel handling equipment for its adequate cooling, prevention of criticality, its operability and maintainability, and for the prevention of fuel damage and radiological release. Furthermore, we discussed additional technical issues related to upgrading the current code requirements based on the modification of the fuel handling equipment. The suggested information provided in this paper would be beneficial to enhance the safety and the reliability of the fuel handling equipment during the handling of new and spent fuel.
        4,000원