For the German energy transition, offshore wind energy is a significant factor of success. The number of installed offshore wind energy turbines is steadily increasing. Currently, the subject matter of offshore wind energy turbine maintenance and its optimization is increasingly in the focus of research and development work. The present contribution examines the logistics of offshore wind energy turbine maintenance and the impact of the actual sea state and of sea state forecasts. To this end, the coordination processes between the players involved in the planning of service operations will be presented and analysed. Based on this, the impact of the quality of wave height forecasts on operation decisions and the mean time to repair will be determined as well as the availability of the turbines at different forecast quality levels. Proceeding on the basis of these results, the concept of a decision-making support system for operative logistics planning will be presented.
This present contribution examines by means of a discrete event and agent-based simulation the potential of a joint use of resources in the installation phase of offshore wind energy. To this end, wind farm projects to be installed simultaneously are being examined, the impact of weather restrictions on the processes of loading, transport and installation are also taken into consideration, and both the wind farm specific resource allocation and the approach of a resource pool or resource sharing, respectively, are being implemented. This study is motivated by the large number of wind farms that will be installed in the future and by the potential savings that might be realized through resource sharing. While, so far, the main driver of the resource sharing approach has been the end consumer market, it has been applied in more and more areas, even in relatively conservative industries such as logistics. After the presentation of the backgrounds and of the underlying methodology, and the description of the prior art in this context, the network of the offshore wind energy installation phase will be described. This is the basis for the subsequent determination of the savings potential of a shared resource utilization, which is determined by the performance indicators such as the total installation time and degree of utilization of the resources. The results of the simulation show that weather restrictions have a significant effect on the installation times and the usage times of the resources as well as on their degree of utilization. In addition, the resource sharing approach, has been identified to have significant savings potential for the offshore wind energy installation.
The competition of maintenance services in the offshore wind industry is continually increasing. The quality of the services acts as the distinguishing feature in the industry. Furthermore, there are public standards, which lead to the permanent necessity to offer further education and training programs for employees. To meet the requirements for further training in the specific field of application within the offshore wind industry, a gamified e-learning application has been developed and is introduced in this paper. It consists of a complete solution, which contains the automated analysis of service protocols to identify qualification needs, the involvement of service technicians in the generation of learning materials, the preparation, transmission as well as the further development of those materials in accordance with the principles of e-learning. Finally, the solution contains a gamified mobile application for qualification, which is designed to meet the individual learning needs of the service technicians. This concept paper follows a problem-centred approach. Based on the current state of technology and research, the problem and motivation are identified and the urgency is verified. Furthermore, a detailed specification of the solution and a first implementation approach is presented.