Wind waves are important due to their high energy and impact on marine activities. This phenomenon is affects directly or indirectly the construction of coastal infrastructure, shipping and recreational activities. Due to the issues presented, marine parameters are very important. In this study, we try to pay attention to wave as one of the most important marine parameters. As the movements of waves have high uncertainty, financial models can be used to simulate the wave's paths. We use the Monte Carlo method for this purpose. The Monte Carlo simulation is a flexible and simple tool that is widely used in the evaluation of random paths. To compute a random path, we require an integral discretization. In this paper, we study the valuation of European options using Monte Carlo simulation and then compare this result with multi-level Monte Carlo approach and other antithetic variables. Then, we use the multi-level Monte Carlo approach proposed by (M. B. Giles 2008) for pricing under the two-factor stochastic volatility model. We show that the multi-level Monte Carlo method reduces the computational complexity and also cost of the two-factor stochastic volatility model when compared with the standard Monte Carlo method. Also, we compare the multi-level Monte Carlo method and standard Monte Carlo method using an Euler discretization scheme and then, analyze the numerical results.
Current marine navigational practice relies less on long-range visual marine signals such as lighthouses for reference purposes. This is due to the availability of Global Navigation Satellite Systems (GNSS), which are integrated with other navigational aids on ships. Therefore, the objective of this study is to review the function of Pisang Island lighthouse and to propose the most relevant use of Pisang Island for current navigational needs. The function of the lighthouse was reviewed according to the IALA Navigational Guide and the AIS data image. The result showed that the most suitable navigational use of the lighthouse is to act as a reference for Line of Position (LOP). The AIS data image indicated that mariners are not using Pisang Island lighthouse for LOP. The trend in the Straits of Malacca (SoM) was compared with the trend in the Straits of Dover, UK. The selected experts verified that LOP was not practised there. As a specific example, a tanker ship route in the South China Sea was used to further support that LOP was not practised. This evidence supported the view that Pisang Island lighthouse is less relevant for current navigational practice and does not directly support the coastal state VTS operation and the establishment of the marine electronic highway. Furthermore, the existing shore-based VTS radar has limitations on range and the detection of targets near Pisang Island. Therefore, this study proposes the establishment of a new radar station on Pisang Island at the existing site of the lighthouse. The proposed new radar station on Pisang Island will add to the existing coverage of the VTS radar, bridging the coverage gaps to overcome the weakness of the existing shore-based radar and improve the safety and security of marine navigation in the SoM.
The significant exodus of containers inland due to the container revolution has increased the salience of inland terminals for efficient freight distribution. Further, the migration of containers gradually inland has forced seaports to depend on these inland terminals to determine their competitiveness and offer a mechanism for competitive freight price to the consumer. The performance of dry ports need to be improved along with the dynamic nature of maritime business, to efficiently fulfil the demand all the key players in the container seaport system, provide economies of scale and scope to their respective clients and enhances the importance of inland networks to improve and consistently elongate the competitiveness of container seaports. Predicated to these importance, this paper aims to enhance dry port performance by adapting a process benchmarking strategy among the Malaysian dry ports. Prior to the adaptation of the process benchmarking approach, a grounded theory had been conducted as a method of analysis among the key players of the Malaysian container seaport system in order to provide essential inputs for the benchmarking. Through this paper, the outcome shows all four Malaysian dry ports need to improve their transportation infrastructure and operation facilities, container planning strategy, competition, location and externalities in order to assist all the key players in the container seaport system efficiently and effectively.
Due to the existence of uncertainties and the unknown time variant environmental disturbances for ship course nonlinear control system, the ship course adaptive neural network robust course-keeping controller is designed by combining the backstepping technique. The neural networks (NNs) are employed for the compensating of the nonlinear term of the nonlinear ship course-keeping control system. The designed adaptive laws are designed to estimate the weights of NNs and the bounds of unknown environmental disturbances. The first order commander are introduced to solve the problem of repeating differential operations in the traditional backstepping design method, which let the designed controller easier to implement in navigation practice and structure simplicity. Theoretically, it indicates that the proposed controller can track the setting course in arbitrary expected accuracy, while keeping all control signals in the ship course control closed-loop system are uniformly ultimately bounded. Finally, the training ship of Dalian Maritime University is taken for example; simulation results illustrated the effectiveness and the robustness of the proposed controller.
This present contribution examines by means of a discrete event and agent-based simulation the potential of a joint use of resources in the installation phase of offshore wind energy. To this end, wind farm projects to be installed simultaneously are being examined, the impact of weather restrictions on the processes of loading, transport and installation are also taken into consideration, and both the wind farm specific resource allocation and the approach of a resource pool or resource sharing, respectively, are being implemented. This study is motivated by the large number of wind farms that will be installed in the future and by the potential savings that might be realized through resource sharing. While, so far, the main driver of the resource sharing approach has been the end consumer market, it has been applied in more and more areas, even in relatively conservative industries such as logistics. After the presentation of the backgrounds and of the underlying methodology, and the description of the prior art in this context, the network of the offshore wind energy installation phase will be described. This is the basis for the subsequent determination of the savings potential of a shared resource utilization, which is determined by the performance indicators such as the total installation time and degree of utilization of the resources. The results of the simulation show that weather restrictions have a significant effect on the installation times and the usage times of the resources as well as on their degree of utilization. In addition, the resource sharing approach, has been identified to have significant savings potential for the offshore wind energy installation.
The methods of celestial navigation to fix the ship position in line with the stars are only applied in the twilight time interval when both the celestial bodies and the horizon apppear simultaneously. This means that these methods cannot be used during the night even if the stars are visible. This paper proposes a novel approach which uses the azimuth of the celestial body in order to establish the great circle equation relating the observed body to the ship position when the celestial bodies appear. In addition, the proposed method does not demand the horizon and sextant equipment as with the previous methods. The key advantage which differentiates this method from previous ones is its ability to determine the ship position during the night when the horizon is invisible. Firstly, the vector calculus is applied to find the mathematical equation for the ship position through analyzing the relationship between the ship position and the great-circle azimuth of the observed body. Secondly, the equation system for the ship position is expanded into a standard system in which the input for the proposed mathematical system are the great-circle azimuth and the coordinates of the observed body. Finally, the numerical technique is also proposed to solve the nonlinear system for the ship position. To verify the validation of this proposed method, a numerical experiment is carried out and the results show that it can be applied well in practice.
A stable supply of seafarers is an important issue for Korean maritime industries and related business activities. After four years of their role on a ship, Korean maritime officers are increasingly being separated from their fellow sailors. The present paper reviews the trend and characteristics in the separation rate of maritime officers, and examines the main factors affecting the separation rate through panel data models. The paper collects the panel data of maritime officers from 2007 to 2014. The main results of panel data models show us that the separation rate is affected mainly by the duration (period) after graduation. The unemployment rate in all industries and the relative wage level of seafarers affect negatively the separation rate. The dummy variable for the completion year of military services shows positive coefficients. We can conclude that the labour market of seafarers is affected by the employment situation in all industries.