검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2020.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        A combination of Polycarbonate (PC) material and Polymethylmethacrylate (PMMA), fabricated using an injection molding machine, has been investigated to determine its advantages, as studied in Ref. 1). This paper aims to investigate the optimization of PMMA/PC blend for both tensile yield strength and impact strength. Furthermore, interaction effects of process conditions on mechanical properties including tensile yield strength and impact strength of PMMA/PC blend by injection molding process are interpreted in this study. Tensile and impact specimens are designed following ASTM, type V, and are fabricated by injection molding process. The processing conditions such as melt temperature, mold temperature, packing pressure, and cooling time are applied; each factor has three levels. As a result, in comparison with optimization of separated responses, mechanical properties of PMMA/PC are found to decrease when optimizing both tensile and impact strengths simultaneously. The melt temperature is found to be the most significant interaction parameter with the mold temperature and packing pressure. In addition, there is more interaction between the mold temperature and cooling time. This investigation provides a useful understanding of the control of injection molding processing of polymer blends in optical application.
        4,000원
        2.
        2014.10 구독 인증기관·개인회원 무료
        Several Mites are currently the most serious threat to the world bee industry. The ectoparasitic honey bee mites was originally confined to the Asian honey bee(Apis cerana etc.). Varroa destructor and Tropilaelaps clareae has plagued European honey bees, Apis mellifera. Differences in mite tolerance are reported between two honey bee species A. mellifera and A. cerana. We were amplified antimicrobial peptide cDNA genes (Defencin, Abaecin, Royalisin, Apidaecin and Hymenoptaecin) by RT-PCR. We explored the transcriptional response to mite parasitism in A. mellifera 4th instars larvae which differ in susceptibility to V. destructor and T. clareae, comparing parasitized and non-parasitized 4th instars larvae (worker and Drone) from same hive. Differential gene expression of worker bees and Drone bees induced by mites (V. destructor and T. clareae) infection was investigated by northern blot. Mites (V. destructor and T. clareae) parasitism caused changes in the expression of genes related to sex distinction. Bees tolerant to mites (V. destructor and T. clareae) were mainly characterized by differences in the expression of genes regulating antimicrobial gene expression. It provides a first step toward better understanding molecular expression involved in this differential sex distinction host-parasite relationship. We were detected bee virus in A. mellifera, comparing parasitized and non-parasitized 4th instars larvae (worker and Drone). Therefore, this result was demonstrated that mites were another possible route of horizontal transmission, as several viruses were detected in mites and their hosts.
        3.
        2014.10 구독 인증기관·개인회원 무료
        South Korea has over 38 millions of managed honey bee (Apis cerana) colonies before 2009 years ago, which produce the highest quantity of honey in the Korea; however, almost colony (99%) were collapsed by Korean Sacbrood Virus (KSBV) in South Korea. Korean Sacbrood Virus (KSBV) is the pathogen of A. cerana Sacbrood disease, which poses a serious threat to honeybee A. cerana, and tends to cause bee colony and even the whole apiary collapse. Colony collapse of A. cerana was first reported on the Pyeong-Chang of the South Korea in 2009. Symptoms of KSBV include the rapid transmission of larval stage honeybees (A. cerana), many dead larvae found in the bottom of hive and comb. Honeybees (A. cerana) are a very important species because they provide a number of pollination services for various ecosystems in some provinces (ex. jeon-nam, jeon-buk province). They are also extremely important organisms within human society, both agriculturally and economically. The fact that a direct cause has been determined suggests that colony collapse is a complex problem with a combination of natural and anthropogenic factors. Possible instigators of colony collapse include: wax moth, viral and fungal diseases, increased population, decreased genetic diversity, climate changing and a variety of other factors. The interaction among these potential causes may be resulting in immunity loss for honeybees and the increased likelihood of collapse.