검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2018.11 구독 인증기관·개인회원 무료
        A membrane contactor technique is proposed to selectively remove the SO2 gas from the ship exhaust gas. Membrane contactor system operates with two independent streams of liquid and gaseous phase, with a large contact area between the streams, resulting in high mass transfer coefficient values. In this study, hydrophobic polypropylene substrate was used to greatly minimize the wetting of the membranes. The performance of three absorbents -distilled water, NaOH, and Na2SO3 aqueous solution- was investigated in terms of SO2 removal efficiency within a specific range of different parameters (gas flow rate, absorbent molarities, liquid flow rate, L/G ratio). Finally, optimum operating parameters for a high SO2 removal efficiency were suggested; and the overall mass transfer coefficient and HTU values were examined.
        2.
        2018.05 구독 인증기관·개인회원 무료
        To remove SO2 from flue gas, a thin film nanocomposite (TFN) hollow fiber membrane was decorated with Nafion/TiO2 nanoparticles. Morphological and structural analyses of the TFN membranes were performed using FTIR, SEM, EDX, TEM, and AFM. The gas permeation experiments were performed with pure gases and a mixed gas within a pressure range of 1-3 bar and feed gas flow rate of 0.03-0.15 L/min. The obtained experimental results suggest that the addition of Nf/TiO2 nanoparticles improved the membrane performance by introducing sulfonate and hydroxyl functional groups to the membrane, and thus increased SO2 permeability and selectivity. The SO2 permeability was found to be 411-1671 GPU, while the ideal selectivities achieved for SO2/N2 and SO2/CO2 were 2928 and 72, respectively. Overall, an SO2 removal efficiency of 93% was achieved by using the Nf/TiO2 incorporated TFN membrane.