A membrane contactor technique is proposed to selectively remove the SO2 gas from the ship exhaust gas. Membrane contactor system operates with two independent streams of liquid and gaseous phase, with a large contact area between the streams, resulting in high mass transfer coefficient values. In this study, hydrophobic polypropylene substrate was used to greatly minimize the wetting of the membranes. The performance of three absorbents -distilled water, NaOH, and Na2SO3 aqueous solution- was investigated in terms of SO2 removal efficiency within a specific range of different parameters (gas flow rate, absorbent molarities, liquid flow rate, L/G ratio). Finally, optimum operating parameters for a high SO2 removal efficiency were suggested; and the overall mass transfer coefficient and HTU values were examined.
For a mobile robot that travels along a terrain consisting of various geology, information on tire force and friction coefficient between ground and wheel is an important factor. In order to estimate the lateral force between ground and wheel, a lot of information about the model and the surrounding environment of the vehicle is required in conventional method. Therefore, in this paper, we are going to estimate lateral force through simple model (Minimal Argument Lateral Slip Curve, MALSC) using only minimum data with high estimation accuracy and to improve estimation reliability of the friction coefficient by using the estimated lateral force data. Simulation is carried out to analyze the correlation between the longitudinal and transverse friction coefficients and slip angles to design the simplified lateral force estimation model by analysing simulation data and to apply it to the actual field environment. In order to verify the validity of the equation, estimation results are compared with the conventional method through simulation. Also, the results of the lateral force and friction coefficient estimation are compared from both the conventional method and the proposed model through the actual robot running experiments.
A completely new flying machine is developed and the details for practical iplementation is suggested. The proposed machine contains no moving parts so that it can be operated in noiseless manner. This paper presents some operational principles of the flying machine as well as the overall process of designing the basic ionic flyer model. The validation of the model is checked by experiments of test flights. Also, two conceptual design results for practical implementation are introdiced with the derivation of design parameters. The application field is expected to include indoor secrete surveillance as well as ion propulsion.