During high speed sewing, the needle thread is exposed to dynamic loading, short strike loading, inertia forces, friction, rubbing, force of check spring, bending, pressure, friction, impact, shock and thermal influence. The dynamic thread loading/tension alters throughout the stitch formation cycle and along its passage through the machine. The greatest tensile force occurs at the moment of stitch stretching, when the take up lever pulls for required thread length through the tension regulator. These stresses act on the thread repeatedly and the thread passes 50-80 times through the fabric, the needle eye and the bobbin case mechanism, before getting incorporated into the seam, which result in upto 40% loss in tensile strength of the sewing thread. This damage in the sewing thread adversely affects its processing and functional performance. In this paper, the contribution of dynamic loading, passage through needle and fabric, and bobbin thread interaction in the loss in tensile properties has been studied. It is observed that the loss in tensile properties occurs mainly due to the bobbin thread interaction. Dynamic loading due to the action of take up lever also causes substantial loss in tenacity and breaking elongation of cotton threads.
The ability of cow dung ash without any pretreatment to remove color from textile dyes N Blue RGB, Green B and EOSIN YWS from aqueous solution has been investigated in this work. Cow dung ash, an ecofriendly and low cost adsorbent was prepared by burning cow dung cakes in the muffle furnace at 500℃. The adsorption was achieved under different pH and adsorbate concentration. The data was fitted to simple polynomial and the isotherms similar to Langmuir and Freundlich isotherms.
The use of low cost and ecofriendly adsorbent has been investigated as an alternative to the current expensive method of removing dyes from wastewater. Cow dung cakes were collected from the nearby village which was burnt in a muffle furnace at 500℃ to obtain the required ash. This paper deals with the removal of Reactive Blue 221, Acidoll Yellow 2GNL and Olive BGL which are mainly used in textile industry, from aqueous solution by cow dung ash without any pretreatment. The adsorption was achieved under different pH, adsorbate concentration and the applicability of Langmuir and Freundlich isotherms were examined.
Investigation of influence the morphology of initial powder particles, application pore-formers for sintering of nickel powders and application of flux for sintering of aluminum was made. Using different methods was prepared material with size of porous in wide range size of pores (). Using the flux for gravity sintering of aluminum in air atmosphere was manufactured porous material with porosity about 45%..