We have investigated the influence of system composition and preparation conditions on the particle size of vitamin E acetate (VE)-loaded nanoemulsions prepared by PIC(phase inversion composition) emulsification. This method relies on the formation of very fine oil droplets when water is added to oil/surfactant mixture. The oil-to-emulsion ratio content was kept constant (5 wt.%) while the surfactant-to-oil ratio (%SOR) was varied from 50 to 200 %. Oil phase composition (vitamin E to medium chain ester ratio, %VOR) had an effect on particle size, with the smallest droplets being formed below 60 % of VOR. Food-grade non-ionic surfactants (Tween 80 and Span 80) were used as an emulsifier. The effect of f on the droplet size distribution has been studied. In our system, the droplet volume fraction, given by the oil volume fraction plus the surfactant volume fraction, was varied from 0.1 to 0.3. The droplet diameter remains less than 350 nm when O/S is fixed at 1:1. The droplet size increases gradually as the increasing the volume fraction. Particle size could also be reduced by increasing the temperature when water was added to oil/ surfactant mixture. By optimizing system composition and homogenization conditions we were able to form VE-loaded nanoemulsions with small mean droplet diameters (d < 50 nm). The PIC emulsification method therefore has great potential for forming nanoemulsion-based delivery systems for food, personal care, and pharmaceutical
applications.
Polymers in cosmetics are used to deliver desired attributes to skin and hair. Precisely constructed block and graft copolymers widen the range of available mechanical properties and compatibilities. Stimuli responsive hydrophobic polymers can be triggered to become hydrophilic by changes in their environment and this can confer waterproof properties at low temperature and easy water removal at higher temperatures. Transfer-resistant cosmetics can be possible due to silicone resins. The control of rheology properties in cosmetics gradually continue to be easy with copolymers. Durability of colors and fragrances for rinse-off products can be enhanced by delivery systems from complex coacervates. Polymeric anti-microbials promise product preservation while minimizing the concern of skin permeation. This article reviews recent trends in the use of polymers in cosmetics.
In this study, We investigated the properites of nano-emulsions containing hydrogenated lecithin prepared by high pressure homogenizer. The size of droplet of emulsions prepared by homogenizer at various rpm (rotation per minute) was not measured due to the unstability of emulsions, however, the size of droplet of nano-emulsions prepared by high pressure homogenizer was around 300 nm and the appearance of emulsions was bluish. The stability of emulsions with various lecithin concentration was tested against time. POV (Peroxide value) of emulsions were plotted against time. POVs of emulsions prepared with an egg lecithin and a soy lecithin were increased with time, however, POV of emulsion with Lecinol S-10® was kept constant within 60 hours and at 60℃. In consumer test, the nano-emulsion showed higher affinity regardless of skin type. Both of irritation scores of emulsions were similar.
We proposed the new nano-carbon ball (NCB) materials for eliminating the total volatile organic compounds(TVOCs) from the felt which is built in the car. The concentrations of acetaldehyde and formaldehyde of the original felts were varied upon the different production lots. Acetaldehyde in the felt can be eliminated to target level(0.2μg) after introducing 0.5 wt% of NCB into the felt. Detector tube method for analyzing formaldehyde gas was more accurate than HPLC method. Formaldehyde can be eliminated to target level (64 ppb) after introducing 0.5 wt% of NCB into the felt. We also found that TVOC can be reduced to target level (0.32μg) after introducing 2.0 wt% of NCB. Upon introducing small amounts of NCB into the felt, it was possible that the level of formaldehyde, acetaldehyde and TVOC formed from the felts can be reduced to the target level. We also suggest the effective analyzing method of TVOCs.