검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 4

        1.
        2019.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Due to the rapid development of electricity, electronics, information communication, and biotechnology in recent years, studies are actively being conducted on nanopowders as it is required not only for high strengthening but also for high-function powder with electric, magnetic, and optical properties. Nonetheless, studies on nickel nanopowders are rare. In this study of the synthesis of nickel nanoparticles from LiNiO2 (LNO), which is a cathode active material, we have synthesized the nanosized nickel powder by the liquid reduction process of NiSO4 obtained through the leaching and purification of LNO. Moreover, we have studied the reduction reaction rate according to the temperature change of liquid phase reduction and the change of particle size as a function of NaOH addition amount using hydrazine monohydrate (N2H4·H2O) and NaOH.
        4,000원
        3.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A study of oxidation kinetic of Fe-36Ni alloy has been investigated using thermogravimetric apparatus (TGA) in an attempt to define the basic mechanism over a range of temperature of 400 to and finally to fabricate its powder. The oxidation rate was increased with increasing temperature and oxidation behavior of the alloy followed a parabolic rate law at elevated temperature. Temperature dependence of the reaction rate was determined with Arrhenius-type equation and activation energy was calculated to be 106.49 kJ/mol. Based on the kinetic data and micro-structure examination, oxidation mechanism was revealed that iron ions and electrons might migrate outward along grain boundaries and oxygen anion diffused inward through a spinel structure, .
        4,000원
        4.
        2013.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The extraction of metallic pure vanadium powder from raw oxide has been tried by Mg-reduction. In first stage, powders as initial raw material was reduced by hydrogen gas into phase. powder was reduced in next stage by magnesium gas at 1,073K for 24 hours. After reduction reaction, the MgO component mixed with reduced vanadium powder were dissolved and removed fully in 10% HCl solution for 5 hours at room temperature. The oxygen content and particle size of finally produced vanadium powders were 0.84 wt% and 1 , respectively
        4,000원