검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        3.
        2017.03 KCI 등재 서비스 종료(열람 제한)
        Potassium channels, the largest group of pore proteins, selectively regulate the flow of potassium (K+) ions across cell membranes. The activity and expression of K+ channels are critical for the maintenance of normal functions in vessels and neurons, and for the regulation of cell differentiation and maturation. However, their role and expression in stem cells have been poorly understood. In this study, we isolated perivascular stem cells (PVCs) from human umbilical cords and investigated the expression patterns of big-conductance Ca2+-activated K+ (BKCa) and voltage-dependent K+ (Kv) channels using the reverse transcription polymerase chain reaction. We also examined the effect of high glucose (HG, 25 mM) on expression levels of BKCa and Kv channels in PVCs. KCa1.1, KCaβ3, Kv1.3, Kv3.2, and Kv6.1 were detected in undifferentiated PVCs. In addition, HG treatment increased the amounts of BKCaβ3a, BKCaβ4, Kv1.3, Kv1.6, and Kv6.1 transcripts. These results suggested that ion channels may have important functions in the growth and differentiation of PVCs, which could be influenced by HG exposure.