검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 11

        2.
        2023.05 구독 인증기관·개인회원 무료
        Kori unit 1, the first PWR (Pressurized Water Reactor) in Korea, was permanent shut down in 2017. In Korea, according to the Nuclear Safety Act, the FDP (Final Decommissioning Plan) must be submitted within 5 years of permanent shutdown. According to NSSC Notice, the types, volumes, and radioactivity of solid radioactive wastes should be included in FDP chapter 9, Radioactive Waste Management, Therefore, in this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. Solid radioactive waste depending on the characteristics of the generation was classified into reactor vessel and reactor vessel internal, large components, small metals, spent nuclear fuel storage racks, insulation, wires, concrete debris, scattering concrete, asbestos, mixed waste, soil, spent resins and filters, and dry active waste. Radiological characterization of solid radioactive waste is performed to determine the characteristics of radioactive contamination, including the type and concentration of radionuclides. It is necessary to ensure the representativeness of the sample for the structures, systems and components to be evaluated and to apply appropriate evaluation methods and procedures according to the structure, material and type of contamination. Therefore, the radiological characterization is divided into concrete and structures, systems and components, and reactor vessel, reactor vessel internal and bioshield concrete. In this study, the types depending on generation characteristics and radiological characterization methods and process of solid radioactive waste were analyzed. The results of this study can be used as a basis for the preparation of the FDP for the Kori unit 1.
        4.
        2020.06 KCI 등재후보 구독 인증기관 무료, 개인회원 유료
        Radioisotope ADME (RI-ADME) studies are enabling visualization of the biodistribution in molecular imaging. We applied RI-ADME to investigate the tumor targeting capacity and biodistribution of trastuzumab-monomethyl auristatin F (LCB14-0110) in JIMT-1 xenograft mice and healthy marmoset. The LCB14-0110 was labelled with 125I. 125I-LCB14-0110 was intravenously administered to the animals. The gamma-count and single-photon emission computed tomography/computed tomography (SPECT/CT) was conducted for biodistributioon and bioimaging of the biopharmaceutics. Tumor uptake in xenograft mice was highest at three-day after 125I-LCB14-0110 administration in both the biodistribution and SPECT/CT bioimaging. Alternatively, blood and organ tissues showed gradual decrease in radioactivity over time. In marmosets, radioactivity in all organ tissues rapidly reduced and no specific targeting of organs was observed in the biodistribution study and SPECT/CT imaging. Hence, 125ILCB14- 0110 demonstrated effective tumor targeting capacity and accumulated in JIMT-1 cell-bearing mice. However, accumulation did not occur in the organs of xenograft mice. Additionally, marmosets showed rapidly decrease in radioactivity throughout the entire body without accumulation in the normal organs. We also confirmed that the drug distribution was similar in normal organs between the two experimental animal species except spleen. Therefore, 125I is expected to be a useful tool in the study of RI-ADME in biopharmaceuticals through minimal antibody modification.
        4,300원
        6.
        2018.07 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A simple, but effective means of tailoring the physical and chemical properties of carbon materials should be secured. In this sense, chemical doping by incorporating boron or nitrogen into carbon materials has been examined as a powerful tool which provides distinctive advantages over exohedral doping. In this paper, we review recent results pertaining methods by which to introduce boron atoms into the sp2 carbon lattice by means of high-temperature thermal diffusion, the properties induced by boron doping, and promising applications of this type of doping. We envisage that intrinsic boron doping will accelerate both scientific and industrial developments in the area of carbon science and technology in the future.
        4,200원