검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2

        1.
        2022.05 구독 인증기관·개인회원 무료
        Technetium-99 (99Tc) is a challenging radionuclide from presents many problems related to safe disposal. The measurement of 99Tc is of particular interest due to its high mobility, and the fact that it is a beta-emitter with a long half-life (t1/2=2.13×105 years) with long-term radiological effects[1]. As an isotopes of 99Tc, 99mTc has been widely applied for medical diagnosis and medical research. It is reported that the 99mTc has been used in 80% of diagnostic nuclear medicine procedures and almost 30 million examinations are conducted worldwide using this isotope. Because 99mTc has a short half-life of 6 h and decays to 99Tc, monitoring and safe disposal of 99Tc from human urine is very important, and concern is increasing every day as global use of 99mTc has increased by more than 4.5×1014 Bq per week and is increasing continuously[2]. However, the current methods for the detection of this radionuclide in such mdium are time consuming and can not satisfy for the low level urine sample analysis. In this work, a method for rapid determination of 99Tc in urine samples was developed. The sample was firstly pre-treated with K2S2O8 to decompose the organic matters combined with 99Tc in 0.5 mol·L−1 HNO3 medium at 100°C. Then the sample solution was loaded to a TEVA column (2 mL) for 99Tc separation and purification. The target element was finally measured by high resolution inductively coupled plasma mass spectrometry (HR-ICPMS). The developed analytical method was proved to be reliable and can be used to rapid determine low-level 99Tc in urine samples.
        2.
        2018.03 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        Tritium and 14C are two most important radionuclides released from nuclear facilities to the environment, and 14C contributes dominant radiation dose to the population around nuclear power plants. This paper presents an overview of the production, pathway, species and levels of tritium and 14C in nuclear facilities, mainly nuclear power plants. The methods for sampling and collection of different species of tritium and 14C in the discharge gas from the stack in the nuclear facilities, atmosphere of the nuclear facilities and environment are presented, and the features of different methods are reviewed. The on-line monitoring methods of gaseous tritium and 14C in air and laboratory measurement methods for sensitive determination of tritium and 14C in collected samples, water and environmental solid samples are also discussed in detailed. Meanwhile, the challenges in the determination and speciation analysis of tritium and 14C are also highlighted.
        6,900원