To realize large-format compact array detectors covering a wide far-infrared wavelength range up to 200 μm, we have been developing Blocked-Impurity-Band (BIB) type Ge detectors with the room- temperature surface-activated wafer bonding technology provided by Mitsubishi Heavy Industries. We fabricated various types of p+-i junction devices which possessed a BIB-type structure, and evaluated their spectral response curves using a Fourier transform spectrometer. From the Hall effect measurement, we also obtained the physical characteristics of the p+ layers which constituted the p+-i junction devices. The overall result of our measurement shows that the p+-i junction devices have a promising applicability as a new far-infrared detector to cover a wavelength range of 100-200 μm.
We present our AKARI study of massive star forming regions where a large-scale cloud-cloud collision possibly contributes to massive star formation. Our targets are Spitzer bubbles, which consist of two types of bubbles, closed and broken ones; the latter is a candidate of the objects created by cloud-cloud collisions. We performed mid- and far-infrared surface photometry toward Spitzer bubbles to obtain the relationship between the total infrared luminosity, LIR, and the bubble radius, R. As a result, we nd that LIR is roughly proportional to R where = 2:10:4. Broken bubbles tend to have larger radii than closed bubbles for the same LIR.