검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 3

        1.
        2016.02 KCI 등재 서비스 종료(열람 제한)
        In this study, the applicability of MBR process was evaluated to improve processing of personal sewage treatment facilities of 50 m3/day or less. As result of the research, stable discharge water quality could be secured as result of the MBR effector operation according to rate of inflow and inflow load and treatment efficiency of 98% or higher was shown by the membrane filtering method operation for SS, BOD5. it was found that high treatment efficiency of 99% or higher. It is judged that detention time can be designed until 6.9 hr when applying MBR process on personal sewage treatment facilities with high pollution load and that cutback of pollution load can be possible through this study. It was shown that MBR process application reduces an annual cost of 4,829,600 won based on the basic unit calculation results and solves burden of amount of borne by causers according to excess of discharge water quality standards.
        2.
        2015.05 서비스 종료(열람 제한)
        The purpose of this study was to evaluate the applicability of the microbial fuel cell for the combined treatment of food waste water and landfill leachate. Contents of the study was to develop a carbon-containing electrode material radially to maximize microbial attachment. Also to evaluate the electric energy production efficiency by combining the electrode surface coating technology. By using a microbial fuel cell organic matter and nitrogen removal efficiency is evaluated for the food waste water and landfill leachate. BET to evaluate the surface characteristics of the developing electrode (Brunauer Emmett Teller) To evaluate the coating adhesion through measurement and to evaluate the adhesion characteristics micro-organism Weighing. Excellent electrical conductivity in the development electrode platinum, cobalt, by coating a catalyst such as palladium and to evaluate the electric energy generation efficiency. Lab. scale reactor capacity is a 5 L, and to configure the cross-section and the oxidizing electrode as cathode sequentially added.
        3.
        2015.05 서비스 종료(열람 제한)
        Livestock Wastewater shall cause a high concentration of organic matter and nutrients such as rivers because of the lake and groundwater contamination, such as the accumulation of nutrients in the soil contained in the manure, livestock wastewater containing large amounts of organic matter that will flow to the river or appeal If eutrophication, and comfortable living environment to cause harm, such as odor and pest damage and can. Organic waste and organic waste, such as the world has a direct interest in acquiring the available resources and the development of clean energy from waste is a growing desire, is expected to contribute to the environment from waste materials industry growth by developing innovative technologies such as direct electrical energy production. In the case of livestock waste water and high concentration of organic material in addition to containing ammonia nitrogen, nitrate nitrogen for nitrification is created due to the electron acceptor is used as the fuel cell according to this has been reported to decrease the efficiency of electricity production. Therefore, to derive the electricity production efficiency due to organic concentration and ammonia nitrogen concentration in order to apply a microbial fuel cell (MFC) livestock wastewater treatment process in this study, and to derive the energy production potential with livestock waste water through the study. Lab. scale Reactor fabrication and operation to try to derive the reaction factor of the optimum operating conditions in accordance with the livestock wastewater applied through the evaluation of trends and removal efficiency of organic matter and nutrients in the microbial fuel cell. In addition, from the final research results, I try to present the direction of future research for the improvement of application possibilities and microbial fuel cell power generation efficiency of microbial fuel cell in the livestock wastewater treatment facilities.