Intensive Monitoring Survey of Nearby Galaxies (IMSNG) is a high cadence observation program monitoring nearby galaxies with high probabilities of hosting supernovae (SNe). IMSNG aims to constrain the SN explosion mechanism by inferring sizes of SN progenitor systems through the detection of the shock-heated emission that lasts less than a few days after the SN explosion. To catch the signal, IMSNG utilizes a network of 0.5-m to 1-m class telescopes around the world and monitors the images of 60 nearby galaxies at distances D < 50 Mpc to a cadence as short as a few hours. The target galaxies are bright in near-ultraviolet (NUV) with MNUV < - 18.4 AB mag and have high probabilities of hosting SNe (0.06 SN yr-1 per galaxy). With this strategy, we expect to detect the early light curves of 3.4 SNe per year to a depth of R 19:5 mag, enabling us to detect the shock-heated emission from a progenitor star with a radius as small as 0.1 R. The accumulated data will be also useful for studying faint features around the target galaxies and other science projects. So far, 18 SNe have occurred in our target fields (16 in IMSNG galaxies) over 5 years, confirming our SN rate estimate of 0.06 SN yr-1 per galaxy.
It has been suggested that only the most luminous AGNs (L ≳ 1045 erg/s) are triggered by galaxy mergers, while less luminous AGNs (L ~ 1043 erg/s) are driven by other internal processes. The lack of merging features in low luminosity AGN host galaxies has been a primary argument against the idea of merger triggering of low luminosity AGNs. But a merger, especially a rather minor one, might still have played an important role in low luminosity AGNs, as minor merging features at low luminosities are more difficult to identify than major merging features. Using SNUCAM on the 1.5 m telescope at Maidanak observatory, we obtained deep optical images of NGC 7743, a barred spiral galaxy classified as a Seyfert 2 AGN with a low bolometric luminosity of 5 X 1042 erg/s. Surprisingly, we discovered a merging feature around the galaxy, which indicates past merging activity in the galaxy. This example indicates that the merging fraction of low luminosity AGNs may be much higher than previously thought, hinting at the importance of galaxy mergers even in low luminosity AGNs.
We present the results of the analysis of FLS 1718+59, a galaxy-galaxy gravitational lens system in the Spitzer First Look Survey (FLS) field. A background galaxy (zs = 0.245) is severely distorted by a nearby elliptical galaxy (zl = 0.08), via gravitational lensing. The system is analysed by several methods, including surface brightness fitting, gravitational lens modeling, and spectral energy distribution fitting. From Galfit and Ellipse we measure basic parameters of the galaxy, such as the effective radius and the average surface brightness within it. gravlens yields the total mass inside the Einstein radius (REin), and MAGPHYS gives us an estimate of the stellar mass inside REin. By comparing these parameters, we confirm that the lens galaxy is an elliptical galaxy on the Fundamental Plane and calculate the stellar mass fraction inside REin, and discuss the results with regards to the initial mass function.