검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 7

        1.
        2024.02 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study investigates the effect of the microstructure of Li1.3Al0.3Ti1.7(PO4)3 (LATP), a solid electrolyte, on its ionic conductivity. Solid electrolytes, a key component in electrochemical energy storage devices such as batteries, differ from traditional liquid electrolytes by utilizing solid-state ionic conductors. LATP, characterized by its NASICON structure, facilitates rapid lithium-ion movement and exhibits relatively high ionic conductivity, chemical stability, and good electrochemical compatibility. In this study, the microstructure and ionic conductivity of LATP specimens sintered at 850, 900, and 950oC for various sintering times are analyzed. The results indicate that the changes in the microstructure due to sintering temperature and time significantly affect ionic conductivity. Notably, the specimens sintered at 900oC for 30 min exhibit high ionic conductivity. This study presents a method to optimize the ionic conductivity of LATP. Additionally, it underscores the need for a deeper understanding of the Li-ion diffusion mechanism and quantitative microstructure analysis.
        4,000원
        2.
        2020.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The 3D printing process provides a higher degree of freedom when designing ceramic parts than the conventional press forming process. However, the generation and growth of the microcracks induced during heat treatment is thought to be due to the occurrence of local tensile stress caused by the thermal decomposition of the binder inside the green body. In this study, an alumina columnar specimen, which is a representative ceramic material, is fabricated using the digital light process (DLP) 3D printing method. DTG analysis is performed to investigate the cause of the occurrence of microcracks by analyzing the debinding process in which microcracks are mainly generated. HDDA of epoxy acrylates, which is the main binder, rapidly debinded in the range of 200 to 500oC, and microcracks are observed because of real-time microscopic image observation. For mitigating the rapid debinding process of HDDA, other types of acrylates PETA, PUA, and MMA are added, and the effect of these additives on the debinding rate is investigated. By analyzing the DTG in the 25 to 300oC region, it is confirmed that the PETA monomer and the PUA monomer can suppress the rapid decomposition rate of HDDA in this temperature range.
        4,000원
        3.
        2019.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In the development of advanced ceramic tools, material improvements and design freedom are critical in improving tool performance. However, in the die press molding method, many factors limit tool design and make it difficult to develop innovative advanced tools. Ceramic 3D printing facilitates the production of prototype samples for advanced tool development and the creation of complex tooling products. Furthermore, it is possible to respond to mass production requirements by reflecting the needs of the tool industry, which can be characterized by small quantities of various products. However, many problems remain in ensuring the reliability of ceramic tools for industrial use. In this study, alumina inserts, a representative ceramic tool, was manufactured using the digital light process (DLP), a 3D printing method. Alumina inserts prepared by 3D printing are pressurelessly sintered under the same conditions as coupon-type specimens prepared by press molding. After sintering, a hot isostatic pressing (HIP) treatment is performed to investigate the effects of relative density and microstructure changes on hardness and fracture toughness. Alumina inserts prepared by 3D printing show lower relative densities than coupon specimens prepared by powder molding but indicate similar hardness and higher fracture toughness values.
        4,000원
        4.
        2017.12 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        SiAlON-based ceramics are some of the most typical ceramic materials used as cutting tools for HRSA(Heat Resistant Super-Alloys). SiAlON can be fabricated using ceramic processing, such as mixing, granulation, compaction, and sintering. Spray drying is a widely-used method for producing a granular powder of controlled morphology and size with flowability. In this study, we report a systematic investigation aimed at optimizing spherical granule morphology by controlling spray-drying parameters such as gas flow and feed rate. Before spray drying, the viscosities of the raw material slurries were also optimized with the amount of dispersant added.
        4,000원
        5.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Reaction-bonded silicon carbide (RBSC) is a SiC-based composite ceramic fabricated by the infiltration of molten silicon into a skeleton of SiC particles and carbon, in order to manufacture a ceramic body with full density. RBSC has been widely used and studied for many years in the SiC field, because of its relatively low processing temperature for fabrication, easy use in forming components with a near-net shape, and high density, compared with other sintering methods for SiC. A radiant tube is one of the most commonly employed ceramics components when using RBSC materials in industrial fields. In this study, the mechanical strengths of commercial RBSC tubes with different sizes are evaluated using 3-point flexural and C-ring tests. The size scaling law is applied to the obtained mechanical strength values for specimens with different sizes. The discrepancy between the flexural and C-ring strengths is also discussed.
        4,000원
        6.
        2017.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        SiAlON-based ceramics are some of the most typical oxynitride ceramic materials, which can be used as cutting tools for heat-resistant super-alloys (HRSA). SiAlON can be fabricated by using gas-pressure reactive sintering from the raw materials, nitrides and oxides such as Si3N4, AlN, Al2O3, and Yb2O3. In this study, we fabricate Ybm/3Si12-(m+n)Alm+nOnN16-n (m=0.3, n=1.9, 2.3, 2.7) ceramics by using gas-pressure sintering at different sintering temperatures. Then, the densification behavior, phase formation, microstructure, and hardness of the sintered specimens are characterized. We obtain a fully densified specimen with β- SiAlON after gas-pressure sintering at 1820℃ for 90 min. under 10 atm N2 pressure. These SiAlON ceramic materials exhibited hardness values of ~92.9 HRA. The potential of these SiAlON ceramics for cutting tool application is also discussed.
        4,000원
        7.
        2017.10 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Ceramic powder, such as MgO, is added as a binder to prepare the green compacts of molten salts of an electrolyte for a thermal battery. Despite the addition of a binder, when the thickness of the electrolyte decreases to improve the battery performance, the problem with the unintentional short circuit between the anode and cathode still remains. To improve the current powder molding method, a new type of electrolyte separator with porous MgO preforms is prepared and characteristics of the thermal battery are evaluated. A Spherical PMMA polymer powder is added as a pore-forming agent in the MgO powder, and an organic binder is used to prepare slurry appropriate for tape casting. A porous MgO preform with 300 μm thickness is prepared through a binder burnout and sintering process. The particle size of the starting MgO powder has an effect, not on the porosity of the porous MgO preform, but on the battery characteristics. The porosity of the porous MgO preforms is controlled from 60 to 75% using a pore-forming agent. The batteries prepared using various porosities of preforms show a performance equal to or higher than that of the pellet-shaped battery prepared by the conventional powder molding method.
        4,000원