Oct4 and Nanog are well-known transcription factors related with self renewal of embryonic stem cell. In low-dose of Nanog, transcription of oct4 is increased; however, oct4 is down-regulated upon high-dose of Nanog. There is a negative feedback loop between oct4 and Nanog. To identify this regulation, we generated 4 nested sets for mouse oct4 promoter. Luciferase activities of oct4 were declined upon high-dose Nanog in all constructs. The declined effects of oct4 upon high-dose Nanog were moderated with DNMT and HDAC inhibitors (5-AZA-cytidine and trichostatin A) in 3 constructs (1867, 1346, 754). But, one construct (2179) was only sensitive to TSA. Taken together, these effects were also represented in semi-quantitative RT-PCR and Western blotting data. These data suggest that negative regulation of oct4 gene upon high-dose Nanog would be accomplished by DNMT and HDAC. Further, it will be studied whether these constraining molecules bind to CR1-4 region of oct4 promoter upon low- and high-dose of Nanog.
Unstable Epigenetic reprogramming was DNA methylation, imprinting, RNA silencing, co-valent modifications of histones and remodelling by other chromatin-associated complexes. After fusion with an enucleated oocyte, a differentiated somatic cell can restructure its genetic program and acquire totipotent characteristics. However, these cases happen only with low frequency. primordial germ cells (PGC) was effectively remove of epigenetic modifications in the genetic totipotency which is necessary for the development. The present study was in vitro development of reconstruct PGC NT embryos compared with somatic cell NT embryos. The rate of cleavage did not differ between NT embryos from PGC and somatic cells (87.26 vs 91.36%). However, the rate of development to the blastocyst stage was significantly higher in PGC cell NT than somatic cell NT (31.03 vs 19.27%). PGC from a slightly younger stage of development have succeed to promote normal development of recipient eggs. This difference in results between germ cell and somatic cell nuclear transfers could only be a reflection of intimate differences in their reprograming. These results suggest that PGC NT embryos are significantly higher for the in vitro development. Furthermore, These study may represent an approach towards achieving better production of transgenic animal.