본 연구는 주변 환경의 차이에 따른 화분매개곤충의 유입 특성을 파악하기 위하여 국립수목원 내 진화속을걷 는정원과 부추속전문전시원에 식재된 울릉산마늘의 화분매개곤충을 조사하였다. 2023년 5월 22일부터 6월 2일 까지 꽃이 70% 이상 개화하였을 때 포충망을 활용하여 8일간 곤충을 채집하였고, 각 전시원 별 식생(피도), 기후 (온도·습도·조도)를 조사하였다. 조사 결과 진화속을걷는정원에서 피도 60% 온도 26.4℃, 습도 31.5%, 조도 40953.6lx, 화분매개곤충 20과 450개체, 부추속전문전시원은 피도 90%, 온도 25.6℃, 습도 31.6%, 조도 6387lx, 화분매개곤충 15과 196개체로 나타났다. 온도와 조도가 상대적으로 높은 진화속을걷는정원이 채집된 곤충의 다양성과 방문 빈도가 높았다. 시간대별 곤충의 방문 빈도를 비교해본 결과 온도와 조도는 개체수가 증가할 때 같이 증가하는 경향을 보였으며, 습도는 반대의 경향을 보였다.
실버 페이스트는 상대적으로 낮은 열처리로 공정이 가능하기 때문에 전자 소자 응용분야에서 유용한 전극 재료이다. 본 연구에서는 은 페이스트 전극에 대기압 플라즈마 제트를 이용하여 전극 표면을 처리 했다. 이 플라즈마 제트는 11.5 kHz 작동 주파수에서 5.5 ~ 6.5 kV의 고전압을 사용하여 아르곤 분 위기에서 생성되었다. 플라즈마 제트는 대기압에서 수행함으로써 인쇄 공정에 더 유용할 수 있다. 플라즈 마 처리시간, 인가된 전압, 가스유량에 따라 전극의 표면은 빠르게 친수성화 되었으며 접촉각의 변화가 관 찰되었다. 또한, 대면적 샘플에서 플라즈마 처리 후 접촉각의 편차가 없었는데, 이는 기판의 크기에 관계없 이 균일한 결과를 얻을 수 있었다는 것을 의미한다. 본 연구의 결과는 대면적 전자소자의 제조 및 향후 응 용 분야에서 적층 구조를 형성하는데 매우 유용할 것으로 기대된다.
Insect killing fungus Beauveria bassiana has been widely studied as a biological control agent. However, many studies have been focused on lab or field-based management. Herein this work, comparison of three B. bassiana strains was investigated under a molecular level. The whole genome sequences of ERL836, JEF-007 were analyzed by PacBio (35.5 Mb of ERL836 and 36.5 Mb of JEF-007) and ARSEF2860 referenced from GenBank (33.7 Mb). To compare the three strains, virulence, thermotolerance and chemical resistance were assayed. The transcriptomes of non-infecting B. bassiana and infecting B. bassiana against western flower thrips were analyzed using RNA-seq. This work can provide that genome features, functions, morphology and gene expression could be different under the molecular level, even if in the same species.
Melon thrips, Thrips palmi Karny (Thysanoptera: Thripidae) is a worldwide polyphagous pest. The management of this pest have mainly relied on chemical agents. However, the overuse is harmful to the environment and results in insects resistance. Therefore, alternative eco-friendly control methods that have different mode of action, such as biological control, are necessary to overcome the current issue. In this study, we isolated entomopathogenic fungi from Korean soil, and characterized them via morphological and molecular techniques and pathogenicity assay against Tenebrio molitor larvae. The isolated fungi were screened for virulence against T. palmi under laboratory conditions and the results were used to establish a thrips-pathogenic fungal library. The highly virulent isolates were selected and further characterized for optimum culture conditions and application as biopesticide in the field.
The global biopesticide market was estimated to become about 4% of the total crop protection market in 2015, mainly due to variability of their efficacy, narrow spectrum or difficulties in long-term storage. Therefore, many people focus on overcoming these issues as a big trend. Suggested solutions include the investigation of synergy between microorganisms, the use of genetic engineering, improving the pesticide life shelf, etc. As a result, biopesticides market has grown by more than 17% over the last decade. In this context and aiming to develop new entomopathogenic fungi–based pest management tools, we constructed a fungal library by isolating insect pathogenic fungi from soil. A total of 581 isolates belonging to 35 species were isolated and characterized. Beauveria bassiana was the most abundant, representing 38.55% of the total strains, followed by Metharizium anisopliae (22.55%) and bubillosa (8.6). …% of the total isolates were highly virulent against Tenebrio molitor killing most of the treated insects in 2 to 3 days.
Japanese pine sawyer, Monochamus alternatus, is the main pest that mediates pine wilt nematode, Bursaphelenchus xylophilus, that causes serious damage to pine forests. In this study, we studied the strategy to control M. alternatus using entomopathogenic fungi. The fungi were collected from soil by an insect-baiting method and two fungal isolates (Metarhizium anisopliae JEF-197 and JEF-279) showed high virulence against M. alternatus. The Metarhizium isolates were evaluated for insecticidal activity against M. alternatus by spray treatment on live pine trees and wintering trees, and the M. anisopliae JEF-197 showed high insecticidal activity. In addition, the interaction of fungi and M. alternatus were analyzed by RNA-seq. This result can contribute to the development of insect control agents using entomopathogenic fungi.
Beauveria bassiana is widely studied for its potential as biopesticide. However, little is known about the factors to influence genetic diversity among isolates. In this work, we aimed to study the gene diversity of 42 isolates to figure out the impact of sequences variability on various biological features. The accumulated data showed no correlation between sequence variability and the fungal geographic localization. Meanwhile, weak to strong correlations have been obtained between the sequence diversity of various genes and the studied biological features. Interestingly, Biotrophy-associated gene 2 gene variability was correlated with all the studied biological features, being an important marker to determine isolates of interest for biological control. Therefore, the obtained data would serve as a database to focus on interesting genes related to improving or screening highly virulent isolates as biological control agents.
A species of Beauveria bassiana is widely used for biological pest management in many countries. Many efforts have been given to figure out the clear fungal mode of action to enhance the insecticidal activity. Homologous recombination (knock-out) or hairpin RNA (knock-down) is popularly used in fungal gene function study, but gene cloning and generation of knock-out or -down mutants takes long time or temporarily knock-downed. Here in this work, we used previously generated egfp-expressing B. bassiana strain (Bb-egfp #3) and integrated dsegfp to the Bb-egfp #3 using a protoplast integration method. This work suggests that protoplast integration with dsRNA possibly generate significantly reduced gene expression in B. bassiana and the reduction is quite stable over generations which provide easy of functional study for fungal mode of action.
The serious emergence of chemical-mediated residual toxicity and insect resistance have been enforced the regulation of synthetic pesticides. Future decisions to select more realistic control options probably depend on the speed of technological development in chemical and biological pesticides. Now, a strategic collaboration between synthetic pesticides and biopesticides has been progressed, such as distribution and R&D in collaboration and M&A for obtaining microbial resources. Recently registered microbial pesticides are entomopathogenic fungi in pest management. A concept of e-biopesticide could be properly combined with digital agriculture and accelerate the use of biological control agents in the future farming.
The longhorned tick, Haemaphysalis longicornis, is one of the vectors of severe fever with thrombocytopenia syndrome virus (SFTSV) in human. The use of pyrethroid insecticides induced pest resistance and environmental residual toxicity. Here in this work, our interest was given to the selection of highly virulent fungi against longhorned tick. A total of 101 fungal pathogens were assayed by dipping the nymph stage of ticks into a conidial suspension. Interestingly of the several species, one species showed high virulence and mycosis were observed in 7-15 days. Highly virulent strains were selected, and semi-field experiments were conducted. As a result, the control efficacy of the isolate was over 80% at 30 days of treatment. This work suggests that entomopathogenic fungi could be used to effectively control longhorend ticks.
Silverleaf whitefly, Bemisia tabaci is a worldwide agricultural pest that cause serious damage to crops. However, since this insect developed resistance to variety of chemicals, alternative control strategy needs to be studied. In this study, we aimed to evaluate the potential of entomopathogenic fungi as biological control tools against this pest. We developed a dipping method in laboratory conditions to screen insecticidal activity of different fungal species and isolates against the nymphal stage of whitefly. The highly virulent isolates were characterized and 2 isolates were further selected based on their high conidial productivity and thermotolerance. Finally, several grain substrates were used to confirm the conidial productivity and thermotolerance of the selected isolates, revealing optimum conidial production when the fungi were cultured on millet grains. Both isolates could be used in further millet grain-based formulations to control the whitefly in fields.
Red mite, Dermanyssus gallinae is one of the serious pests, damaging to the egg production in chickens. Moreover, the overuse of chemical insecticides caused pest resistance and environmental residual toxicity. Therefore, this work provides a screening method to select entomopathogenic fungi as a candidate of environmentally safe control agent, having high miticidal activity against D. Gallinae. The virulence test was conducted using a spraying method. Of the several species, Beauveria species showed high virulence and mycosis were observed. Some isolates were produced on eight cereal grains in Petri dish conditions. Millet, perilla seed and barley showed the high conidia production. Conidia of the isolates produced on millet and rice showed high thermal stability, when exposed to 45℃. Based on these results, this work suggests that entomopathogenic fungi could be used to control the D. Gallinae.