검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        2.
        2023.11 구독 인증기관·개인회원 무료
        Nuclear safety, security, and safeguards (nuclear 3S) are essential components for establishing robust nuclear environments. Nuclear safety is to protect public and environments from radioactive contamination, which can be caused in accidents. Nuclear security is to protect nuclear facilities from terrorism or sabotage, which related to physical a ttacks or insider threats. And nuclear safeguards is to protect nuclear materials from extortion by a state with a purpose of weaponizing activities. When a new nuclear facility is introduced, it is possible to save abundant amount of resources by considering nuclear 3S in an early stage (design phases). Initially, the international atomic energy agency (IAEA) recommended safeguards-by-design (SBD) approach. The concept of SBD gradually expands to nuclear 3S-by-design (3SBD). Though there are differences in purpose and target subject, each nuclear ‘S’ is closely related with others. When introducing a certain technology or equipment in order to enhance one ‘S’, another ‘S’ also get affected. The effect can be synergies or conflicts. For instance, confidential information in nuclear security is required for a safeguards activity. On the contrary, inspection equipment for safeguards can be used for security. Pyroprocessing is a technology for managing used nuclear fuels. As pyroprocessing is a backend fuel cycle technology, a sensitive nuclear technology, safeguards has taken a large portion of nuclear 3S research in an effort to achieve international credibility and nuclear transparency. As mentioned, there are both synergies and conflicts in integrating nuclear 3S. In this study, we investigate potential challenges in applying nuclear 3S integration to pyroprocessing by addressing synergies and conflicts. This approach will suggest required supplementary methods to build the reliable pyroprocessing environment.
        3.
        2023.05 구독 인증기관·개인회원 무료
        As the use of nuclear energy has been expanded, issues in a spent nuclear fuel management are raised. Several methods have been proposed and developed to manage spent fuels safely and efficiently. One method is to reduce environmental burden in disposal of spent fuels by decreasing volume of high-level waste. A nuclides management process (NMP) is one example. Through this novel process, it is able to separate highly mobile nuclides (ex. iodine, krypton), high thermal emission nuclides (ex. strontium, barium), and optionally, uranium from spent fuels. Since the NMP is a back-end fuel cycle technology, a reliable safeguards system should be employed in the facility. As international atomic energy agency (IAEA) recommends safeguards-by-design (SBD), it is desirable to investigate an appropriate safeguards approach at a step of technology development. Process monitoring (PM) is a complemental safeguards technology for traditional safeguards technologies which based on mass balance. PM traces nuclear materials indirectly but consecutively by using process parameters such as temperature, pressure, and flow of fluid. These parameters are obtainable by installing appropriate sensors. In a respect of SBD, PM is a promising approach to achieve the safeguards goal, the timely detection of diversion of a nuclear material. However, it is necessary to classify useful process parameters from all available signals which provided from PM in order to properly utilize PM. In this study, we investigated application methods of the PM approach to NMP. NMP consists of several unit processes in series. Firstly, we inspected a principle and a feature of each unit process. Based on the results, we evaluated applicability of the PM approach to each unit process according to effectiveness in enhancing safeguardability. Several unit processes were expected that their safeguards are able to be enhanced by using certain process parameters from PM.