검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 34

        1.
        2023.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        어류의 번식은 뇌에서 분비되는 다양한 신경호르몬과 뇌하수체에서 분비되는 생식소 자극 호 르몬에 의해 조절된다. 극동산 뱀장어(Anguilla japonica)의 번식도 이 호르몬들의 작용에 의해 조절되지만 성 성숙 시 신경호르몬이 뇌하수체 호르몬을 조절하는 방법은 완전히 밝혀지지 않 았다. 이전 연구에 의하면 progesterone (P4), melatonin 및 serotonin (5-HT) 등과 같은 신경호 르몬이 일부 어류의 번식 과정 조절에 관여하는 것으로 밝혀졌다. 본 연구에서는 뱀장어의 뇌 하수체를 초대 배양하였고, 안정화된 뇌하수체 세포에 P4, 17β-estradiol (E2), melatonin 및 5- HT를 처리하였다. 이후 처리된 호르몬의 작용이 뇌하수체 세포에서 번식 관련 호르몬인 FSHβ, LHβ, GH 및 SL mRNA 발현에 어떤 영향을 미치는지 조사하였다. 본 연구를 수행한 결과, P4는 뇌하수체 세포에서 FSHβ와 LHβ 발현을 증가시켰고, melatonin은 FSHβ와 LHβ 뿐만 아니라 GH 와 SL의 발현을 증가시켰다. 하지만 5-HT는 이 유전자의 mRNA 발현에 유의한 영향을 미치지 않았다. 이상의 결과는 P4 또는 melatonin이 뱀장어의 초기 성 성숙에 중요한 역할을 할 수 있음을 의미한다.
        4,200원
        7.
        2019.03 KCI 등재 구독 인증기관 무료, 개인회원 유료
        A total of 23 individuals of glass eel (Anguilla japonica) were investigated from two estuarine barrages of the Nakdong River in 2016. It was observed that most individuals migrated through the eastern barrage, compared to the western. Individual numbers differed significantly along the corridor modification of the barrages; for example, the number of individuals was two to three times higher after the modification. These results indicate that modification of fish way and lock gate for has facilitated migration of glass eel, and our study potentially offers the operation strategy of estuarine barrage in order to induce more active migration of glass eel.
        4,000원
        8.
        2018.12 구독 인증기관 무료, 개인회원 유료
        The purpose of this study is to determine the effects of vibration on primary (e.g. plasma cortisol), secondary (e.g. plasma glucose, aspartate aminotransferase (AST), alanine aminotransferase (ALT), Na+, K+ and Cl- and tertiary (e.g. mortality) stress responses in cultured eel, Anguilla japonica. For this purpose, three groups (including one control group and two stress groups) were set up. The control group was made exposed to vibration corresponding to 48 decibel (dB, V) (produced using electric vibrators) for 15 minutes per hour every day, and the two stress groups was made exposed to vibration corresponding to 58 and 68 dB (V) (produced using the same electric vibrators), equally, for 15 minutes per hour every day. Blood was sampled at day 0 (before starting vibration stress tests, BS), and days 1, 3, 5, 7, 9 and 11 (after starting vibration stress tests). As a result, plasma cortisol showed trend to continuously rise by consecutive stress from 4.1±0.1 ng/ml in BS. In 48 dB group (control), cortisol showed the highest level with 7.6±0.9 ng/ml after 7 days (p <0.05), but at 9 and 11 days was not significantly compared with BS level. In 58 dB group, the cortisol showed the highest level with 43.1±4.8 ng/ml after 1st day. Cortisol of 68 dB group increased significantly during the experimental period (14.4±2.3~32.0± 5.7 ng/ml) (p<0.05). In 58, and 68 dB groups during the experimental period differed significantly compared to 48 group (p <0.05). Glucose in 48 dB were increased from 42.0 ±5.7 (BS) to 52.5±2.1 (1 day), the level was not significantly from 1 to 11 days. Glucose in 58 and 68 dB groups was increased significantly than BS during experimental period (p <0.05). K+ in 68 dB increased significantly (p <0.05) from 2.3±0.2 mE/ql (BS) to 3.3± 0.5 mE/ql at 5 days. In 48 and 58 dB groups during the experimental period differed significantly (p <0.05). Na+ and Cl- levels were not differed significantly during the experimental period. AST and ALT in 58 and 68 dB groups showed trend to continuously rise by consecutive stress. At 7 and 9 days in AST, between 48, 58 and 68 dB groups differed significantly (p <0.05). In 48, 58 and 68 dB groups at 1 day, blood hematocrit increased significantly higher than BS. The 11 days after vibration stress, the mortality in 48, 58 and 68 dB groups was 1.1, 5.1 and 5.8%, respectively. The present results have shown that A. japonica exhibited ''typical'' physiological responses when exposed to chronic vibration stress. These data suggested that chronic vibration stress caused substantial stress in the fish; especially the persisting elevated plasma AST and ALT levels observed would be expected to adverse effect. In conclusion, chronic vibration stress could greatly affects the hematological characteristics in A. japonica.
        4,000원
        1 2