검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 27

        22.
        2016.12 KCI 등재 서비스 종료(열람 제한)
        The present study was conducted to investigate effect of dietary protected amino acid on milk yield and composition in dairy cow using meta-analysis. Total 21 research papers were employed in analysis, and mixed model was used for the analysis of effects. Effect of protected methionine (PM) and combination of protected methionine and lysine (PML) were investigated under two different levels of dietary crude protein (CP, <18% and >18%). For performance of dairy cow, milk yield, milk composition including milk fat and protein content and yield and 4% FCM (fat corrected milk) production were used for analysis. In case of milk yield, a trend of increment was found at PM supplementation at low CP (P=0.055). However, the effect of PM at high CP was detected as not significant (P>0.05). In case of milk protein, inclusion of PM at low CP showed significant decrement (P<0.05). However, there was no significant effect of MP on milk protein at high CP (P>0.05). Supplementation of MP at high CP level showed significant increment of milk fat (P<0.05). MP supplementation represented significant increment of 4% FCM production (P<0.05) regardless of dietary CP levels. Effects of PML on milk yield and composition at both of low and high dietary CP were not significant in this study. However, it seem to be that there was a possible positive effect of MPL application at high dietary CP on performance of dairy cow.
        23.
        2015.05 서비스 종료(열람 제한)
        Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor(SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35℃). The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 days and its corresponding OLRs of 4.27 kgVS/m³-day. The optimum ranges of biogas and methane production rates were 1.47 volume of biogas per volume of reactor per day(v/v-d) and 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07-0.09 and 0.38-0.43, respectively, that were greatly stable in operation. The Total Volatile Solids(TVS) removal efficiency based on the biogas production was 45.2% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160 mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
        24.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Efforts were made to identify the optimum operational condition of Semi-continuously Fed and Mixed Reactor (SCFMR) to treat the dairy cow manure and saw dust mixture. Step-wise increase in organic loading rates (OLRs) and decrease in hydraulic retention times (HRTs) were utilized until the biogas volume became significantly decreased in SCFMR at mesophilic temperature (35oC). The optimum operating condition of the SCFMR fed with TS 15% dairy cow manure and saw dust mixture was found to be at HRTs of 30 ~ 35 days and its corresponding OLRs of 3.5 ~ 4.3 kgVS/ m3-day. The optimum ranges of biogas and methane production rates were 1.36 ~ 1.47 volume of biogas per volume of reactor per day (v/v-d) and 1.0 ~ 1.14 v/v-d, respectively. This result was due to the high alkalinity concentration of SCFMR fed with the original substrate, dairy cow manure and saw dust mixture whose alkalinity was more than 10,000 mg/L as CaCO3. The parameters for the reactor stability, the ratios of volatile acids and alkalinity concentrations (V/A) and the ratio of propionic acid and acetic acid concentrations (P/A) appeared to be 0.07 ~ 0.09 and 0.38 ~ 0.43, respectively, that were greatly stable in operation. The Total Volatile Solids (TVS) removal efficiency based on the biogas production was 39 ~ 45% at the optimum HRTs. Free ammonia toxicity was not experienced at above 160mg/L due to the acclimation of high concentration of ammonia by the high reactor TS content above 9.0%.
        25.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        Anaerobic mesophilic batch tests of dairy cow manure, dairy cow manure/saw dust mixture and dairy cow manure/ rice hull mixtures collected from bedded pack barn were carried out to evaluate their ultimate biodegradability and two distinctive decay rates (k1 and k2) with their corresponding degradable substrate fractions (S1 and S2). Each 3 liter batch reactor was operated for more than 100 days at substrate to inoculum ratio (S/I) of 1.0 as an initial total volatile solids (TVS) mass basis. Ultimate biodegradabilities of 37 ~ 46% for dairy cow manure, 32 ~ 40% for dairy manure/saw dust mixture and 31 ~ 38% for dairy cow manure/rice hull mixture were obtained respectively. The readily biodegradable fraction of 90% (S1) of dairy manure BVS (So) degraded with in the initial 29 days with arange of k1 of 0.074 day−1, where as the rest slowly biodegradable fraction (S2) of BVS degraded for more than 100 days with the long term batch reaction rate of 0.004 day−1. For the dairy manure/saw dust mixture and dairy manure/rice hull mixture, their readily biodegradable portions (S1) appeared 71% and 76%, which degrades with k1 of 0.053 day−1 and 0.047 day−1 for an initial 30 days and 38 days, respectively. Their corresponding long term batch reaction rates were 0.03 day−1.
        26.
        2013.10 KCI 등재 서비스 종료(열람 제한)
        This study was carried out to investigate the effect of DDGS hydrolysate (H-DDGS) and rumen-protected lysine-choline complex (RPLC) on milk production and blood metabolites in dairy cows. Feeding trials was performed to latin-square design using the 4 mid-lactational cows for 8 weeks, and treated with T1 (H-DDGS 1.1 kg), T2 (H-DDGS 0.73 kg + RPLC 0.15 kg), T3 (H-DDGS 0.37 kg + RPLC 0.30 kg) and T4 (H-DDGS 0.37 kg + RPLC 0.15 kg) according to the content of protein source. Dry matter intake (DMI) of TMR and average weight showed no significant difference between treatments. The milk production of T1, T2 and T4 were significantly higher than T3 treatment (p < 0.05), and milk/DMI efficiency tend to increase in the T1. Milk components showed no significant difference between treatments, however, the milk protein of T2 increased to 0.15% than T1. Also blood metabolites showed no significant difference between treatments. But T-CHO level numerically represented a lower trend in the treatments of adding to RPLC compared with T1. This result suggests that the high level (1.1 kg) of H-DDGS is expected to improve the feed utilization without the negative impact on weight gain, feed intake and milk production as the lactation stage of dairy cows proceeds, and 0.15 kg of RPLC under the same feeding conditions of H-DDGS may be useful on fat metabolism.
        1 2