검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        21.
        1995.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was carried out to get required torque data needed to design and develop a roll-up ventilation system in a pipe-constructed plastic film green-house. The results obtained from this study are as follows : 1. The required torques of a roll-up ventilation system in greenhouse are the functions of its length. The torques should multiplied by the conversion coefficients (2.0 in ceiling vent, 1.8 in side vent) in case of application. 2. In constructing pipe-constructed plastic film greenhouse, a shaft pipe is the largest essential element in roll - up shaft weight constitution which have an effect on the required torques. Therefore, the pipe should be light using nonferrous materials like aluminum alloy. 3. A planetary reduction ventilator of differential ring gear type is suitable for a roll-up ventilation system, because it can make high efficient reduction just using the first step shift.
        4,000원
        22.
        1998.06 KCI 등재 서비스 종료(열람 제한)
        The oil crisis of the 1970s and the rise in oil prices motivated people to implement energy conservation strategies. Buildings were fitted with additional insulation and reduced ventilation rates. The reduction of mechanical and natural ventilation rate led to increases in indoor pollutant concentrations which resulted in increased health risks from indoor exposure to pollutants. The variable-air-volume/bypass filtration system(VAV/BPFS) is a variation of the conventional VAV systems, The VAV/BPFS is an electronically controlled system that provides cost-effective thermal comfort and acceptable indoor air quality. Under controlled conditions in a chamber, a series experiments were performed to compare the ability of a VAV/BPFS to remove indoor aerosol concentration and to reduce energy consumption with that ability of conventional VAV system. Results show that the VAV/BPFS increases the effective ventilation rate and removes indoor air pollutant, and maintains acceptable indoor air quality without sacrificing energy consumption.
        23.
        1997.12 KCI 등재 서비스 종료(열람 제한)
        A study on ventilation design using the spreadsheet model is carried out to propose means of available design. A sample of complex ventilation system in the non-standard condition is used to illustrate this spreadsheet model. In developing the spreadsheet model, this study has attempted to it general by using computional equations and design parameters that can be readily applied to any spreadsheet software. Also, most design data is contained in the spreadsheet template. This template provides the same design information as the ACGIH worksheet, and operates quickly and efficiently, and is flexible enough to use under different conditions. spreadsheet model allows the ventilation engineer to design quickly and accurately the ventilation system, without spending too much effort in the design process. By storing on computer and diskette, the design data computed finally can be used as a permanent record of specific ventilation system, and because of flexibility to be able to design over and over again while making only slight changes to the input data, the spreadsheet model is used availably to accomplish the design optimazation by redesign and troubleshooting by review from field measurements. Also, the spreadsheet model is available for designing ventilation system under different condition or evaluating existing system or design drawing, because changes in the layout or formulae can be readily made to fit the needs of the designer.
        24.
        1996.12 KCI 등재 서비스 종료(열람 제한)
        Industrial ventilation is a crucial engineering measure to protect workers from hazardous airborne contaminants. Designing a ventilation system is not an easy task. To solve this problem, many U. S. computer programs and softwares have been developed. In Korea, asoftware, called as VPMC, was developed by Korea Industrial Safety Corporation. But VPMC could not stand alone since it can be used to design not a hood, but a ventilation system. In this research, therefore, a preprocessing software was developed. It can be used to design general ventilation system, canopy hood, open surface tank hood. The program was written in Microsoft Visual Basic. In near future, this software will be incorporated into a total package software which can be used to design a whole ventilation system.
        1 2