검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 24

        21.
        2015.02 서비스 종료(열람 제한)
        산업혁명 이후 연료의 사용이 늘어 CO2 배출량이 급증하여 지구온난화로 인한 다양한 환경변화를 야기해 전 세계가 기후 변화의 위협에 직면해 있다. 국내 온실가스 총 배출량 중 건설 분야 비중은 약 42%로 높은 비중을 차지하고 있으며, 이 중 도로 분야는 약 16%의 비중을 차지하고 있다. 건설재료 및 자재는 제조 시 대부분 화석연료를 사용하므로 CO2 발생량이 매우 많다. 이와 같은 상황을 고려하여 도로 분야에서도 점차적으로 환경 친화적 건설에 대한 중요성이 부각되고 있다. 최근 국내에서는 도로건설로 인하여 발생되는 환경문제를 해소하기 위한 방안으로 친환경 도로건설을 이루기 위하여 다양한 포장 공법이 개발되고 있으나 소음저감, 미끄럼저항 증대 또는 내구성 강화 등의 기능성 측면만을 고려하여 연구가 진행되어졌을 뿐 도로 이용자 측면에서의 친환경성을 확보하고자 오염물질의 저감 및 화석자원의 고갈 등에 대한 근본적인 환경문제의 해결은 미비한 실정이다. 본 연구에서는 친환경 도로포장의 재료로 슬래그 골재를 사용하였고, 슬래그 골재의 입도 및 기초물성 측정, 혼합물 제작을 수행하였다. 슬래그 골재는 다공성 재질로 일반 골재의 흡수율 기준보다 높게 측정되었고, 혼합물 제작 시 조건을 다르게 하여 평가를 진행하였다. 슬래그의 밀도 차이로 동일 중량임에도 두께 얇고 일반 골재와 혼합시 두 재료의 밀도가 다르기 때문에 통과중량백분율 적용이 어려운 것으로 확인되었다. 밀도가 다른 두 재료의 혼합을 위해 체적 단위로 환산한 배합비를 적용하여 배합설계를 수행하였다. 두 종류로 제작된 혼합물의 비교를 통해 슬래그 골재 사용의 극대화 한 재활용 포장 기술의 적용 및 고부가가치화 목적을 두어 연구를 진행하였다.
        22.
        2014.12 KCI 등재 서비스 종료(열람 제한)
        The IPCC methodology for estimating methane emissions from a solid waste landfill is based on the first order decay (FOD) method. One emission factor in the model is the methane generation potential (L0) that is estimated from the amount of decomposable degradable organic carbon (DOC) in a solid waste landfill. L0 is estimated based on the fraction of DOC in the waste, the fraction of the degradable organic carbon that decomposes under anaerobic conditions (DOCf), methane correction factor (MCF), and the fraction of methane in generated landfill gas (F). The other emission factor is the methane generation rate constant (k). The IPCC recommended that every country needs to develop country-specific key parameters (DOC, DOCf, k) more appropriate for its circumstances and characteristics. The objective of this research was to investigate the greenhouse gas emission factor (k) and parameters (DOC, DOCf) for wood wastes in a solid waste landfill. To investigate DOC, DOCf, and k for wood wastes, the biodegradable rate of wood wastes was determined by comparing the composition of excavated samples (L-1, L-2) with their fresh ones (F-1, F-2). The DOC values were found to be 48.36% and 45.27% for F-1 and F-2, respectively. It showed that the IPCC default value of DOC for wood wastes is appropriate for estimating methane emission. The maximum DOCf (0.17 and 0.18) or each wood waste excavated from G landfill was found to be lower compared with those for IPCC. The IPCC provided that default values of DOCf 0.5. The k values were found to be 0.0055 and 0.0058 year−1 for F-1 and F-2, respectively. The result confirmed that the biodegradation rate of wood wastes was very slow due to its lignin.
        23.
        2013.12 KCI 등재 서비스 종료(열람 제한)
        Analysis and evaluation of uncertainty is adopting the advanced methodology among the methods for greenhouse gas emission assessment that was defined in GPS2000 (Good practice guideline 2000) and GPG-LULUCF (GPG Land Use, Land-Use Change and Forestry). In 2006 IPCC guideline, two approaches are suggested to explain the uncertainty for each section with a national net emission and a prediction value on uncertainty as follows; 1) Spread sheet calculation based on the error propagation algorithm that was simplified with some assumptions, and 2) Monte carlo simulation that can be utilized in general purposes. There are few researches on the agricultural field including greenhouse gas emission that is generated from livestock and cultivation lands due to lack of information for statistic data, emission coefficient, and complicated emission formula. The main objective of this study is to suggest an evaluation method for the uncertainty of greenhouse gas emission in agricultural field by means of intercomparison of the prediction value on uncertainties which were estimated by spread sheet calculation and monte carlo simulation. A statistic analysis for probability density function for uncertainty of emission rate was carried out by targeting livestock intestinal fermentation, excrements treatment, and direct/indirect emission from agricultural lands and rice cultivation. It was suggested to minimize uncertainty by means of extraction of emission coefficient according to each targeting section.
        24.
        2012.10 KCI 등재 서비스 종료(열람 제한)
        Quantifying greenhouse gas (GHG) emission is important for evaluating various reduction measures for greenhouse gas, which causes significant negative impacts on earth. To estimate GHG emission from waste sector over the period of between 2000 and 2009 in Daejeon Metropolitan City, the 2006 IPCC (Intergovernmental Panel on Climate Change) and Korean GHG Inventory for local government guidelines and methodologies were employed. Four different waste treatment methods (landfill, incineration, biological treatment, and Sewage wastewater treatment) were evaluated to estimate GHG emission by following the guidelines. The trends of GHG emission rate by direct emission increased between 2000 and 2009 as a result of increased incineration rate. The solid waste sector was directly responsible for 307,700 tonCO2eq/yr in 2009. Incineration contributed approximately 57% of the GHG emission, while landfill disposal was responsible for about 30% of the GHG. Approximately 464,400 tonCO2eq/yr in 2009 was emitted by indirect emission from the waste sector. Based on the results, a variety of measures are needed to reduce the GHG emission from waste sector in Daejeon Metropolitan City along with implementing effective waste source reduction and recycling policy. More specifically, this evaluation proposed that among the possible reduction options, further source separation of recyclables as well as improved diversion of recyclable materials at proposed Daejeon resource recycling complex in 2014 would have the greater benefits for reducing GHG emissions in Daejeon Metropolitan City's waste sector.
        1 2