검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 104

        41.
        2012.09 구독 인증기관 무료, 개인회원 유료
        Sphingosine-1-phosphate (S1P) has a many function involved proliferation, differentiation and survival of many cells. In this study, to investigate whether S1P improve the developmental competence of porcine embryos, 50 nM of S1P were supplemented during in vitro maturation (with EGF or without EGF) medium and/or in vitro culture (IVC) medium. Addition of S1P was significantly increased the rate of oocytes reaching metaphase II (MII) compared to the control (83.5 vs. 64.1%) in without EGF medium, but not with EGF medium (89.5 vs. 84.6%). When treated with 1 μM of N1N-dimethylsphingosine (DMS), a sphingosine kinase inhibitor which is blocked endogenous generation of S1P, the meiotic progression rates to MII stage (without EGF: 45.2 and with EGF: 66.7%) were significantly decreased and degeneration rates (without EGF: 51.2 and with EGF: 30.1%) were increased in both medium compared to control group during IVM periods. Also, the rates of blastocyst formation was significantly increased in the S1P treated group compared to control group (29.0 vs. 19.2%) of EGF supplemented medium, whereas there were no effect in the EGF free medium (9.0 vs. 10.5%). After 12 h IVM, the phosphorylation of ERK1 and ERK2, which is major signaling pathway of MAP kinase, were increased in the S1P group than that of control or DMS group. When supplemented of S1P during IVC, the rates of blastocyst formation and total cell number (30.2% and 40.6) were significantly increased in S1P-treated group compared with control (20.1% and 32.5), DMS (12.3% and 25.1), and S1P plus DMS group (24.7% and 33.6). The percentage of apoptosis nuclei in the S1P group was significantly decreased than other groups. Also, the rates of blastocyst formation (26.7 vs. 14%) and total cell number (42.8 vs. 32.5) were significantly increased in the S1P group than those of control group when S1P added during the entire IVM and IVC periods. Taken together, our results indicate that S1P supplementation in IVM and/or IVC medium affects beneficial effect of meiotic maturation and subsequent developmental competence of porcine embryos.
        4,000원
        42.
        2012.06 구독 인증기관·개인회원 무료
        The present study examined the expression of porcine sirtuin 1–3 (Sirt1–3) genes in immature (germinal vesicle; GV stage), mature (metaphase II; MII stage) oocytes, preimplantation embryos derived from parthenogenetic activation (PA), in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). We also investigated the role of sirtuins in oocyte nuclear and cytoplasmic maturation, and embryonic development of PA and IVF embryos using sirtuin inhibitor [5 mM nicotinamide (NAM) and 100 μM sirtinol]. The expression of Sirt1–3 mRNA was significantly (p<0.05) up-regulated during IVM. The expression patterns of Sirt1–3 mRNA in preimplantation embryos of PA, IVF and SCNT were gradually (p<0.05) decreased from MII stage of oocyte to blastocyst stage. Especially, the expressions of Sirt1 and Sirt3 in SCNT blastocysts were significantly lower than IVF blastocysts. Treatment with nicotinamide (NAM) during IVM resulted in significantly decreased nuclear maturation but it was restored when NAM treated with 2 μM resveratrol (RES; known as antioxidant and sirtuin activator) compared to the control (control: 88.9%, NAM: 67.9% and NAM+RES: 86.4% respectively). Intracellular reactive oxygen species (ROS) level of oocytes matured with NAM was significantly increased and with NAM+RES was significantly decreased compared to the control. Treatment with sirtuin inhibitors during IVC resulted in significantly decreased blastocyst formation and total cell number of blastocyst derived from PA (NAM: 29.4% and 29.6, sirtinol: 31.0% and 30.3, and control: 40.9% and 41.7, respectively) and IVF embryos (NAM: 10.4% and 30.9, sirtinol: 6.3% and 30.5, and control: 16.7% and 42.8, respectively). There was no significant difference in cleavage rate both PA and IVF embryos. Oocytes treated with NAM during IVM showed significantly lower expression of PCNA, Bax, Bcl-2, POU5F1 and Sirt1–3 compared to the control. Oocytes treated with NAM+RES during IVM restored gene expression except POU5F1. Similarly, PA derived blastocysts treated with NAM during IVM showed down-regulation of PCNA, Bax, Bcl–2, POU5F1 and Sirt1–2. The blastocysts derived from PA embryos treated with sirtuin inhibitors during IVC showed lower (p<0.05) expressions of POU5F1 and Cdx2 genes. Also, Sirt2 mRNA expression was significantly decreased in sirtinol treated group and Sirt3 mRNA expression was also significantly de -creased in both NAM and sirtinol treated groups compared to the control. These findings indicate that Sirt1–3 which are transcribed and stored during oocyte maturation may have physiological and important roles in porcine oocyte maturation and preimplantation embryonic development by regulating gene expressions. * This work was supported by a grant from Next-Generation BioGreen 21 program (# PJ008121), Rural Development Administration, Republic of Korea.
        43.
        2011.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Presently, the effect of 0.5 mM dibutyryl cAMP (dbcAMP)-supplemented maturation medium during different incubation time on meiotic arrest (germinal vesicle) and resumption (metaphase II) of porcine oocytes and embryonic development of porcine oocytes following in vitro fertilization (IVF) or parthenogenetic activation (PA) was determined. Porcine cumulus oocyte complexes (COCs) were cultured in 0.5 mM dbcAMP for 17, 22, 27, or 42 h, and an additional 22 h without 0.5 mM dbcAMP. The nuclear status was examined at each time point. Oocytes cultured from 39~49 h displayed more than 80% meiotic resumption. More than 85 % of meiotic arrest was presented at 17~22 h. Oocytes were cultured for 22 h with 0.5 mM dbcAMP and additional 22 h without dbcAMP to assess developmental potential following IVF or PA. There were no significant differences in blastocyst rates among the dbcAMPIVF, IVF, dbcAMP-PA, and PA groups, although cleavage rate of IVF group was significantly higher than those of dbcAMP-PA, and PA groups. In conclusion, 0.5 mM dbcAMP influenced meiotic maturation of porcine oocytes depending on incubation time of oocyte, although embryonic development was not improved in both IVF and PA.
        4,000원
        44.
        2011.10 구독 인증기관·개인회원 무료
        The present study investigated the effects of resveratrol (a phytoalexin with various pharmacological activities) during in vitro maturation (IVM) of porcine oocytes on nuclear maturation, intracellular glutathione (GSH), and reactive oxygen species (ROS) levels, gene expressions in matured oocytes, cumulus cells, and IVF-derived blastocysts, and subsequent embryonic development after parthenogenetic activation (PA) and in vitro fertilization (IVF). In the nuclear maturation after 44 h IVM, the groups of 0.1, 0.5, and 2.0 μM (83.0%, 84.1%, and 88.3%, respectively) had no significant difference compared to the control (84.1%), but the group of 10.0 μM decreased the nuclear maturation (75.0%) significantly (p<0.05). The groups of 0.5 and 2.0 μM showed a significant (p<0.05) increase in intracellular GSH levels compared to the control and 10.0 μM groups. Intracellular ROS level of oocytes matured with 2.0 μM resveratrol was significantly (p<0.05) decreased compared to the other groups. Oocytes treated with 2.0 μM resveratrol during IVM had significantly higher blastocyst formation rate, and total cell numbers after PA (62.1% and 49.1 vs. 48.8%, and 41.4, respectively) and IVF (20.5% and 54.0 vs. 11.0% and 43.4, respectively) compared to the control group. Cumulus-oocytes complex (COCs) treated with 2.0 μM resveratrol were showed lower (p<0.05) expressions of apoptosis-related genes in both matured oocytes (Bax, Bak, and Caspase-3) and cumulus cells (Bax). In IVF-derived blastocysts derived from 2.0 μM resveratrol treated oocytes had also decreased (p<0.05) expression of Bak compared to the control. In conclusion, the 2.0 μM resveratrol supplementation during IVM improved the developmental potential of PA and IVF in porcine embryos by increasing the intracellular GSH level, decreasing ROS level, and regulating apoptosis-related genes expression during oocyte maturation.
        45.
        2011.10 구독 인증기관·개인회원 무료
        X‐box binding protein‐1 (XBP‐1) is an important regulator of a subset of genes active during endoplasmic reticulum (ER) stress. In the present study, we analyzed XBP‐1 level and location to explore the effect of ER stress on oocyte maturation and developmental competency of porcine embryos in an in vitro culture system. First, we examined the localization of XBP‐1 at different meiotic stages of porcine oocytes and at early stages of parthenogenetic embryo development. Fluorescence staining showed that expression of functional XBP‐1 was weak in mature oocytes and at the one‐cell, two‐cell, and eight‐cell stages of embryos, but abundant at the GV oocyte, four‐cell, morula, and blastocyst stages. In addition, RT‐PCR revealed that both spliced XBP‐1 (XBP‐1s ) and unspliced XBP‐1 (XBP‐1u) were expressed at the GV oocyte, four‐cell, morula, and blastocyst stages. Tunicamycin (TM), an ER stress inducer, blocked porcine embryonic development at the four‐cell stage, exhibiting the effect on embryonic genome activation. Next, porcine embryos cultured in the presence of tauroursodeoxycholate (TUDCA), an ER stress inhibitor, were studied. Total cell numbers and the extent of the ICM increased (p<0.05), whereas the rate of nuclear apoptosis decreased (p<0.05). Moreover, expression of the anti‐apoptotic gene Bcl‐2 increased whereas expression of the pro‐apoptotic genes Bcl‐xl and p53 decreased. The results indicated that inhibition of ER stress enhanced porcine oocyte maturation and embryonic development by preventing ER stress‐mediated apoptosis in vitro.
        46.
        2011.09 구독 인증기관 무료, 개인회원 유료
        Heat shock protein 90 (Hsp90) is ATPase-directed molecular chaperon and affects survival of several cells. In our previous study, inhibitory effect of Hsp90 by inducing cell cycle arrest and apoptosis in the pig embryonic and primary cells was reported. However, its role during early bovine embryonic development is not sufficient. In this study, we traced the effects of Hsp90 inhibitor, 17-allylamino-17-demethoxygeldanamycin (17-AAG), on early bovine embryonic development. We also investigated several indicators of developmental potential, including structural integrity, gene expression (apoptosis-related genes), and apoptosis, which are affected by 17-AAG. Bovine embryos were cultured in the CR1-aa medium with or without 17-AAG for 7 days. In result, significant differences in developmental potential were detected between the embryos that were cultured with or without 17-AAG (33.1±9.6 vs 21.7± 8.3%). The structural integrity of the blastocysts was examined by differential staining. Blastocysts from the dbcAMP- treated group had higher numbers of ICM, TE, and total cells than those from the untreated group. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) showed that the number of containing fragmented DNA at the blastocyst stage increased in the 17-AAG treated group compared with control (11.2 vs 3.9, respectively). Blastocysts that developed in the 17-AAG treated group had low structural integrity and high apoptotic nuclei than those of the untreated control, resulting in decrease the embryonic qualities of preimplantation bovine blastocysts. The m-RNA expression of the pro-apoptotic gene (Bax) increased in 17-AAG treated group, whereas expression of the antiapoptotic gene (Bcl-XL) decreased. In conclusion, Hsp90 also appears to play a direct role in bovine early embryo developmental competence including structural integrity of blastocysts. Also, these results indicate that Hsp90 is closely associated with apoptosis-related genes expression in developing bovine embryos.
        4,000원
        48.
        2010.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The first morphogenetic event of preimplantation development, compaction, was required efficient production of porcine embryos in vitro. Compaction of the porcine embryo, which takes place at post 4-cell stage, is dependent upon the adhesion molecule E-cadherin. The E-cadherin through -catenin contributes to stable cell-cell adhesion. Rho-associated kinase (ROCK) signaling was found to support the integrity of E-cadherin based cell contacts. In this study, we traced the effects of ROCK-1 on early embryonic development and structural integrity of blastocysts in pigs. Then, in order to gain new insights into the process of compaction, we also examined whether ROCK-1 signaling is involved in the regulation of the compaction mediated by E-cadherin of cellular adhesion molecules. As a result, real-time RT-PCR analysis showed that the expression of ROCK-1 mRNA was presented throughout porcine preimplantation stages, but not expressed as consistent levels. Thus, we investigated the blastocyst formation of porcine embryos treated with LPA and Y27632. Blastocysts formation and their qualities in LPA treated group increased significantly compared to those in the Y27632-treated group (p < 0.05). Then, to determine whether ROCK-1 associates embryonic compaction, we explored the effect of activator and/or inhibitor of ROCK-1 on compaction of embryos in pigs. The rate of compacted morula in LPA treated group was increased compared to that in the Y27632-treated group (39.7 vs 12.0%). Furthermore, we investigated the localization and expression pattern of E-cadherin at 4-cell stage porcine embryos in both LPA- and Y27632-treated groups by immunocytochemical analysis and Western blot analysis. The expression of E-cadherin was increased in LPA-treated group compared to that in the Y27632-treated group. The localization of E-cadherin in LPA-treated group was enriched in part of blastomere contacts compared to that Y27632-treated group. ROCK-1 as a crucial mediator of embryo compaction may plays an important role in regulating compaction through E-cadherin of the cell adhesion during the porcine preimplantation embryo. We concluded that ROCK-1 gene may affect the developmental potential of porcine blastocysts through regulating embryonic compaction.
        4,000원
        49.
        2009.10 구독 인증기관·개인회원 무료
        An outbreak of Ussur Brown Katydid, Paratlanticus ussuriensis, occurred in the orchard areas of central Korea during 2006 and 2007. These crickets occur widely in Korea but before 2000 they were not regarded as an agricultural pest and were mainly confined to wooded hillsides. In an attempt to understand this katydid ecology, firstly, we have conducted a life cycle study of the Ussur brown katydid. This katydid spends one or two years as an egg stage. Most of eggs enter the initial diapause, which take place in stage 4. Less than 10% eggs didn't occur the initial diapause and developed until in stage 23 before beginning winter season. In the laboratory experiment, diapause depends on the initial temperature after eggs laid. They had an initial and final diapause around less 25℃. Therefore, it takes two years to hatch at low temperature. On the other hand, eggs are kept at temperatures around over 27℃, entry into the first diapause stage was circumvented and eggs emerged the following spring. That is, the high temperature seems to affect on the life cycle of Katydid. Thus, if they are exposed to high temperature on early egg stage, they emerge next year just after spending a winter.
        50.
        2009.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to examine the effect of eCG and various concentrations (20, 40, and 80 ) of porcine FSH on nuclear maturation and intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were matured in TCM-199 supplemented with porcine follicular fluid, cysteine, pyruvate, EGF, insulin, and hormones (10 IU/ml hCG and 10 IU/ml eCG or FSH) for the first 22 h and then further cultured in hormone-tree medium for an additional 22 h. Nuclear maturation of oocytes () was not influencem foreCG and various concentrations FSH. Embryonic development to the cleavage stage () and mean number of cells in blastocyst ( cells) after PA were not altered but blastocyst formation e-treignificaddlor(p<0.05) improvem forthe supplementation eith 80 FSHr(64%) compared to 47%, io8%, iand 47% in oocytes that were treated with eCG, 20,i and 40 FSH,i numectivelo. In SCNT, fusion () of cell-cytoplast couplets and siosequent embryo cleavage () were not influencem fordifferent gonadotropins but blastocyst formation tended to increase forthe supplementation eith 80 FSHr(25% vs. ). Our nuults demonstrated that oocyte maturation and embryonic development after PA and SCNT e-frinfluencem fortype of gcem fortype of gits concentration. In this study, supplementation of maturation medium eith 80 FSHrimproved preimplantation development of PA and SCNT pig embryos, probably by increasing intracellular GSH concentration of matured oocytes.
        4,000원
        51.
        2009.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The objective of this study was to examine the effect of macromolecule in a maturation medium on nuclear maturation, intracellular glutathione (GSH) level of oocytes, and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Immature pig oocytes were cultured in maturation medium that was supplemented with each polyvinyl alcohol (PVA), pig follicular fluid (pFF) or newborn calf serum (NBCS) during the first 22 h and the second 22 h. Oocyte maturation was not influenced by the source of macromolecules during in vitro maturation (IVM). Embryo cleavage and cell number in blastocyst after PA was altered by the source of macromolecule but no difference was observed in blastocyst formation among treatments. Oocytes matured in PVA-PVA medium showed lower rates of oocyte-cell fusion (70.4% vs. 7782%) and embryo cleavage (75% vs. 8690%) after SCNT than those matured in other media but blastocyst formation was not altered (1327%) by different macromolecules. pFF added to IVM medium significantly increased the intracellular GSH level of oocytes compared to PVA and NBCS, particularly when pFF was supplemented during the first 22 h of IVM. Our results demonstrate that source of macromolecule in IVM medium influences developmental competence of oocytes after PA and SCNT, and that pFF supplementation during the early period (first 22 h) of IVM increases intracellular GSH level of oocytes.
        4,000원
        54.
        2008.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        The purpose of this study was to determine the effects of Taxol pre-treatment to in vitro matured bovine oocytes, and sucrose and trehalose added to vitrification solution on spindle morphology and embryonic development following cryopreservation. Bovine oocytes were collected from ovaries and matured in tissue culture medium 199 (TCM 199) supplemented with 10% Fetal Bovine Serum (FBS), 0.05ng/ml epidermal growth factor, 0.01 IU/ml luteinizing hormone and estradiol for 22h in , 5% , TCM 199-HEPES containing 20% FBS was used as basic medium (BM) to prepare vitrification solution. Oocytes were pre-treated with Taxol in maturation medium for 15 min prior to vitrification. Oocytes were exposed to 1.6 M ethylene glycol (EG) and 1.3M dimethyl sulfoxide (DMSO) in BM and then were exposed to 3.2 M EG, 2.6 M DMSO and 0.5 M sucrose in BM or 3.2 M EG, 2.6 M DMSO and 0.5 M trehalose in BM. Oocytes with cumulus cells and oocytes without cumulus cells were considered as control 1 and control 2, respectively and held in TCM 199-HEPES at . Oocytes were frozen using modified solid surface vitrification and were stored in cryotubes in liquid nitrogen for more than 1 week. Frozen oocytes were thawed in TCM 199-HEPES containing 0.5 M, 0.25 M and 0.1 M sucrose in BM for 2 min, respectively or 0.5 M, 0.25 M and 0.1 M trehalose in BM for 2 min, respectively. Immunoflurorescence staining of oocytes was performed to assess spindle morphology and chromosome configuration of oocytes. The rates of cleavage and blastocyst were examined following in vitro fertilization. Normal spindle morphology rate of oocytes pre-treated with Taxol prior to vitrification was not higher than that of other vitrified groups. Taxol pre-treatment did not increase cleavage and blastocyst formation rates, although control groups showed significantly higher rates (p<0.05). Percentages of normal spindle and embryonic development were not significantly different among vitrified groups regardless of type of sugar. In conclusion, Taxol pre-treatment of oocytes before cryopreservation did not reduce the damage induced by vitrification and subsequently did not improve embryonic development following vitrification. Trehalose may be used as an alternative non-permeating cryoprotectant in vitrification solution.
        4,000원
        57.
        2008.06 KCI 등재 구독 인증기관 무료, 개인회원 유료
        This study was conducted to establish an in vitro maturation (IVM) system by selection of efficient macromolecule in the porcine in vitro production (IVP) technology. To choose the efficient macromolecules in the development of porcine embryos, the effects of 3 kinds of macromolecules (porcine serum; PS, porcine follicular fluid; pFF, and polyvinyl alcohol; PVA) supplemented in IVM media on the maturation, cleavage, and development rates to blastocyst of parthenogenetic activation (PA) and in vitro fertilization (IVF) embryos were examined. The maturation rates of porcine oocytes in media supplemented with PS were significantly higher than those with pFF and PVA (92.4% vs. 85.4%, 77.1%; p<0.05). In the cleavage and development to blastocyst rates, supplement with PS or pFF in the IVM media was more effective than PA. However, there were no significant differences in cleavage and development to blastocyst between PS and pFF group. From the results of this study, it was demonstrated that PS was optimal macromolecule in the porcine IVM media.
        4,000원
        1 2 3 4 5