검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 44

        41.
        2005.09 KCI 등재 서비스 종료(열람 제한)
        A three-dimensional ecological model (EMT-3D) was applied to Nonylphenol in Tokyo Bay. EMT-3D was calibrated with data obtained in the study area. The simulated results of dissolved Nonylphenol were in good agreement with the observed values, with a correlation coefficient(R) of 0.7707 and a coefficient of determination (R2) of 0.5940. The results of sensitivity analysis showed that biodegradation rate and bioconcentration factor are most important factors for dissolved Nonylphenol and Nonylphenol in phytoplankton, respectively. In the case of Nonylphenol in particulate organic carbon, biodegradation rate and partition coefficient were important factors. Therefore, the parameters must be carefully considered in the modeling. The mass balance results showed that standing stocks of Nonylphenol in water, in particulate organic carbon and in phytoplankton are 8.60×105 g, 2.19×102 g and 3.78×100 g, respectively. With respect to the flux of dissolved Nonylphenol, biodegradation in the water column, effluent to the open sea and partition to particulate organic carbon were 6.02×103 g/day, 6.02×102 g/day and 1.02×101 g/ day, respectively.
        42.
        2001.10 KCI 등재 서비스 종료(열람 제한)
        To investigate air quality away from the coastal urban source region, we used a hybrid Eulerian-Lagrangian method which can describe the formation, transport, transformation and deposition processes in complex terrain. with inclusion of shipping sources that were considered to be important emission in the coastal urban region. The result of the Eulerian advection - diffusion prediction was quite similar to that of the Lagrangian particle diffusion prediction. It showed that pollutants emitted from piers can affect the part of inland, especially Dongrae and the coastal area. Those emitted from Sasang and Janglim industrial complexes can affect Hwamyeong and the coastal, respectively. During the daytime the concentration was low due to large deposition flux and terrain effect.
        44.
        1994.03 KCI 등재 서비스 종료(열람 제한)
        An one dimensional atmosphere-vegetation interaction model is developed to discuss of the effect of vegetation on heat flux in mesoscale planetary boundary layer. The canopy model was a coupled system of three balance equations of energy, moisture at ground surface and energy state of canopy with three independent variables of T_f(foliage temperature), T_g(ground temperature) and q_g(ground specific humidity). The model was verified by comparative study with OSU1D(Oregon State University One Dimensional Model) proved in HYPEX-MOBHLY experiment. As the result, both vegetation and soil characteristics can be emphasized as an important factor in the analysis of heat flux in the boundary layer. From the numerical experiments, following heat flux characteristics are cleary founded simulation. The larger shielding factor(vegetation) increase of T_f while decrease T_g because vegetation cut solar radiation to ground. Vegetation, the increase of roughness and resistance, increase (f sensible heat flux in foliage while decrease the latent heat flux in the foliage.
        1 2 3