검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 435

        43.
        2020.02 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We report the detection of exoplanet candidates in orbits around HD 60292 and HD 112640 from a radial velocity (RV) survey. The stars exhibit RV variations with periods of 4953 days and 6136 days, respectively. These detections are part of the Search for Exoplanets around Northern Circumpolar Stars (SENS) survey using the ber-fed Bohyunsan Observatory Echelle Spectrograph installed at the 1.8-m telescope of the Bohyunsan Optical Astronomy Observatory in Korea. The aim of the survey is to search for planetary or substellar companions. We argue that the periodic RV variations are not related to surface inhomogeneities; rather, Keplerian motions of planetary companions are the most likely interpretation. Assuming stellar masses of 1:7  0:2M⊙ (HD 60292) and 1:8  0:2M⊙ (HD 112640), we obtain minimum planetary companion masses of 6:5  1:0MJup and 5:0  1:0MJup, and periods of 495:4  3:0 days and 613:2  5:8 days, respectively.
        4,000원
        45.
        2019.06 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present an analysis of the chemical abundances and kinematics of six low-mass dwarf stars, previously claimed to be candidate hypervelocity stars (HVSs). We obtained moderate-resolution ($R\sim6000$) spectra of these stars to estimate the abundances of several chemical elements (Mg, Si, Ca, Ti, Cr, Fe, and Ni), and derived their space velocities and orbital parameters using proper motions from the \gaia\ Data Release 2. All six stars are shown to be bound to the Milky Way, and in fact are not even considered high-velocity stars with respect to the Galactic rest frame. Nevertheless, we attempt to characterize their parent Galactic stellar components by simultaneously comparing their element abundance patterns and orbital parameters with those expected from various Galactic stellar components. We find that two of our program stars are typical disk stars. For four stars, even though their kinematic probabilistic membership assignment suggests membership in the Galactic disk, based on their distinct orbit l properties and chemical characteristics, we cannot rule out exotic origins as follows. Two stars may be runaway stars from the Galactic disk. One star has possibly been accreted from a disrupted dwarf galaxy or dynamically heated from a birthplace in the Galactic bulge. The last object may be either a runaway disk star or has been dynamically heated. Spectroscopic follow-up observations with higher resolution for these curious objects will provide a better understanding of their origin.
        4,500원
        46.
        2019.04 구독 인증기관·개인회원 무료
        53.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        The Galactic Center is one of the most dense stellar environments in the Galaxy and is considered to be a plausible place to harbor many neutron stars. In this brief review, we summarize observational efforts in search of neutron stars within a few degrees about the Galactic Center. Up to 10% of Galactic neutron stars may reside in this central region and it is possible that more than a thousand neutron stars are located within only ∼ 25'' about the Galactic Center. Based on observations, we discuss prospects of detecting neutron stars in the Galactic Center via gravitational waves as well as electromagnetic waves.
        4,000원
        54.
        2018.10 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        We present various infrared two-color diagrams (2CDs) using WISE data for asymptotic giant branch (AGB) stars and Planetary Nebulae (PNe) and investigate possible evolutionary tracks. We use the sample of 5036 AGB stars, 660 post-AGB stars, and 2748 PNe in our Galaxy. For each object, we cross-identify the IRAS, AKARI, WISE, and 2MASS counterparts. To investigate the spectral evolution from AGB stars to PNe, we compare the theoretical model tracks of AGB stars and post-AGB stars with the observations on the IR 2CDs. We find that the theoretical dust shell model tracks can roughly explain the observations of AGB stars, post-AGB stars, and PNe on the various IR 2CDs. WISE data are useful in studying the evolution of AGB stars and PNe, especially for dim objects. We find that most observed color indices generally increase during the evolution from AGB stars to PNe. We also find that Fe0.9Mg0.1O dust is useful to fit the observed WISE W3-W4 colors for O-rich AGB stars with thin dust shells.
        4,000원
        1 2 3 4 5