검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 94

        74.
        2018.11 구독 인증기관·개인회원 무료
        Chlor-alkali (CA) membranes as key materials to generate chlorine gas and sodium hydroxide are composed of sulfonic acid layer (S-layer) and carboxylic acid layer (C-layer) to provide fast sodium ion transport and slow hydroxide ion diffusion, respectively. Aciplex F, a representative CA membrane is made in a double layer form via thermal adhesion of both layers after each single layer film is independently fabricated. Unfortunately, the membrane fabrication induces delamination particularly in their interface as a result of hydroxide ion diffusion occurring during CA operation, leading to rapid increase in electrochemical overpotential. In this study, selective chemical conversion technique was developed to solve the delamination issue. Their effectiveness was proved by applying the same concept to a wide range of PFSA membrane.
        75.
        2018.11 구독 인증기관·개인회원 무료
        알칼라인 수전해 공정에 사용되는 복합 분리막은 고분자와 나노 세라믹 입자로 구성되며 기계적 안정성과 높은 이온 전도성을 가지는 것이 필수적이다. 나노 세라믹 입자는 알칼라인 용액 내 수산화이온(OH-)의 전도성을 높인다고 보고되어 왔으나 세라믹 입자의 비율에 따른 OH-의 관계와 효과의 이해가 미흡한 실정이다. 본 연구에서는 여러 물성 측정(버블포인트, 이온 저항 등)을 통하여 분리막 성능에 입자의 비율이 미치는 영향과 원인을 연구하였다. 입자의 비율이 증가하면 이온 저항은 감소하며, 높은 버블포인트를 유지한다. 이는 분리막 내의 OH-증가로 이온 저항이 낮아지며, 입자의 밀집한 배열이 버블포인트를 유지하는 것으로 판단된다. 따라서 비율의 증가에 따라 OH-상호 작용으로 높은 전도성과 안정성을 가져온다.
        76.
        2018.11 구독 인증기관·개인회원 무료
        Saline water electrolysis is an electrochemical process to produce valued chemicals by applying electric power. Perfluorinated sulfonic acid (PFSA) ionomers have been used as polymer electrolyte membrane (PEM) materials owing to their high sodium ion selectivity and barrier properties. However, sulfonic acid groups in PFSA ionomers are chemically decomposed under a basic catholyte condition, which makes the PEM materials lose their ionic selectivity and Faraday efficiency. In this study, double layered membranes were prepared by anchoring cross-linked hydrocarbon ionomers, as a protection layer to catholyte atmosphere, into the water channels, particularly, located at around the surface of a PFSA membrane. Here, each monomer results in the identical chemical architecture and different free volume content when polymerized.
        77.
        2018.11 구독 인증기관·개인회원 무료
        Water electrolysis is a representative electrochemical process to generate hydrogen gas together with oxygen gas by applying electric power. Perfluorinated sulfonic acid (PFSA) ionomers have been widely used as electrode binder materials, in addition to polymer electrolyte membrane materials for water electrolysis to generate hydrogen and oxygen gases with a high purity simultaneously. PFSA binder materials act as physical supports for inorganic catalyst materials in both electrodes. The binder materials play role in transporting protons for hydrogen gas and oxygen gas evolution reaction in the cathode and the anode, respectively. In this study, PFSA ionomers with different chemical architectures and equivalent weights were used as binder materials for water electrolysis. The structure property performance relationship was disclosed.
        78.
        2018.05 구독 인증기관·개인회원 무료
        Chlor-alkali (CA) membrane process is a commercially useful process to produce valued chemicals such as chlorine, sodium hydroxide and hydrogen via salined water electrolysis using sodium ion (Na+)-selective membranes. The most important issue in CA process is to reduce high energy consumption. A plausible solution is to obtain highly Na+-conductive membranes. The representative membrane materials are chemically stable perfluorinated sulfonic acid (PFSA) ionomers such as Nafion® and Aciplex®. PFSA membranes, but it is necessary to develop alternatives to PFSA membranes. In this study, a sulfonated poly(arylene ether sulfone) copolymer membrane is radiation-grafted with a highly sulfonated poly(styrene) used as a side chain material.
        79.
        2018.05 구독 인증기관·개인회원 무료
        Saline water electrolysis is a representative electrochemical conversion to produce chlorine gas and sodium hydroxide as major products by applying electric power. Perfluorinated sulfonic acid (PFSA) ionomers have been usually used as polymer electrolyte membrane materials owing to high sodium ion selectivity and strong resistance to acidic compounds (e.g., Cl2, HCl and so on) produced in anode. However, PFSA ionomers have been suffering from chemical degradation occurring when exposed under harsh basic condition in cathode. In this study, double layered chlor-alkali membranes were prepared by anchoring crosslinked hydrocarbon ionomer via radical polymerization technique in water channels located in a surface layer of PFSA ionomer membranes and electrochemically evaluated.
        80.
        2018.05 구독 인증기관·개인회원 무료
        Perfluorinated sulfonic acid (PFSA) ionomers have been widely used as representative polymer electrolyte membrane (PEM) materials for water electrolysis to generate hydrogen and oxygen gases with a high purity (e.g., 99.999%) simultaneously. PEM should satisfy high selectivity of proton to water and act as gas barrier to hydrogen and oxygen in order to improve current efficiency which is a barometer to determine how effectively the electric energy is used for water electrolysis. In this study, PFSA ionomers with different chemical architectures and equivalent weights were used to make PEM materials for water electrolysis. The structure-property-performance relationship was systematically investigated.
        1 2 3 4 5