A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% +10% doped with . Quenched ribbons are very brittle and consisted of homogeneous pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was .
The efficiency of thermoelectric devices for different applications is known to depend on the thermoelectric effectiveness of the material which tends to grow with the increase of its chemical homogeneity. Thus an important goal for thermal devices is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification (melt spinning method) followed by hot pressing was investigated to produce homogeneous material. Characteristics of the material were examined with HRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as dopant quantity and hot pressing temperature. Quenched ribbons are very brittle and consist of homogeneous , solid solutions. When the process parameters were optimized, the maximum figure of merit was 2.038×10-3K-4. The bending strength of the material hot pressed at 50 was 8.2 kgf/.
solid solutions are of great interest as materials for thermoelectric energy conversion. One of the key technologies to ensure the efficiency of thermoelectric device is to obtain chemically homogeneous solid solutions. In this work, the new process with rapid solidification followed by hot pressing was investigated to produce homogeneous thermoelectric materials. Characteristics of the materials were examined with XRD, SEM, EPMA-line scan and bending test. Property variations of the materials were investigated as a function of variables, such as excess Te quantity and hot pressing temperature. Quenched ribbons are very brittle and consisted of homogeneous , solid solutions. When the process parameters were optimized, the maximum figure of merit was 3.073. The bending strength of the material, hot pressed at 45, was 5.87 kgf/.