검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 2,721

        161.
        2022.10 구독 인증기관·개인회원 무료
        We developed a 100 kW Class Transferred Type Plasma Torch applicable for melting of noncombustible metal wastes. By employing reverse polarity discharge structures for hollow electrode plasma torch, a transferred type arc plasma was generated stably with long arc length higher than 10 cm at the arc currents of ~400 A and gas (N2) flow rate of ~50 lpm. High arc currents and high arc voltages caused by the increased arc length could input high power level of ~100 kW to the noncombustible metal wastes, enabling quick melting. In addition, relatively long arc length and low gas flow rates can help reduce the deposition of melted materials on the exit surface of the torch. Thanks to these features, the developed plasma torch is expected to be suitable for small-scaled and portable melting system.
        162.
        2022.10 구독 인증기관·개인회원 무료
        The “shadow zone” is defined as a region below a flow obstacle, such as a vault, in unsaturated soils. Due to the capillary discontinuity of the cavity, water saturation on the top and side of the cavity is higher than the ambient saturation. On the bottom of the cavity, however, there is a region where water saturation is lower than ambient saturation. Undoubtedly, a shadow zone may also exist below a LILW disposal vault built in subsurface soils above the water table before the vault is fully degraded. During the degradation, flow in the shadow zone is controlled by the rate of water infiltrating the degrading vault. In this study, as one of the efforts to be made for enhancing safety margin by a realistic safety assessment of the engineered vault type LILW disposal facility, the shadow zone effect is investigated by a numerical parametric study using AMBER code. The conceptual model and data were excerpted from IAEA, ISAM Vault Test Case for the liquid release design scenario. It is assumed that the nearfield barriers degrade with time. In order to compare a visible shadow zone effect, the vault degradation period is assumed to be both 500 and 1,000 years, and the shadow zone depth to be varied according to unsaturated zone lithology. It can be seen that with a shorter shadow zone (2.7 m), radionuclides arrive at the water table earlier than with a full shadow zone (55 m) due to increased advection rate in the unsaturated zone. This effect tends to be more visible in the case of a longer degradation period. For radionuclides with short residence time relative to their half-lives in the unsaturated zone, such as Tc-99 and I-129, the radionuclides are shown to come out because they will arrive sooner, thereby allowing less peak release rate, when the shadow zone effect is considered. Once the vault is completely degraded and the infiltration rate of water flowing through the vault is equal to the ambient rate, the shadow zone effect disappears. In this example calculations using IAEA ISAM Vault Test Case input parameters, it might not be shown a significant shadow zone effect. Nevertheless, when the extent of the shadow zone is determined through more sophisticated hydraulic studies in the unsaturated soils surrounding the vault, the shadow zone effect would be checked up on the realistic near-field radionuclide transport modeling in order to contribute to gaining safety margins for post-closure safety assessment of the Wolsong 2nd phase LILW disposal facility.
        163.
        2022.10 구독 인증기관·개인회원 무료
        The reliable information on the hydraulic characteristics of rock mass is one of the key site factors for design and construction of deep subsurface structures such as geological radioactive nuclear waste disposal repository, underground energy storage facility, underground research laboratory, etc. In order to avoid relying on foreign field test technology in future projects, we have independently designed and made integrated type main frame, 120 bar waterproof downhole sonde, and 1,200 m wireline cable winch through a series of R&D activities. They are core apparatuses of the Deep borehole Hydraulic Test System (DHTS). Integration of individual test equipment into a single main frame allows safe and efficient work in the harsh field condition. The DHTS was developed aiming primarily for constant pressure (head) injection test and pulse test in deep impermeable rock mass. The maximum testing depth of the DHTS is about 1,050 m from the surface. Using this system, it is possible to make precise stepwise control of downhole net injection pressure in less than 2.0 kgf/cm2 with dual hydraulic volume controller and also to inject and measure the very low flow rate below 0.01 l/min with micro flow rate injection/control module. Over the past two years, we have successfully completed more than 50 in situ hydraulic tests at 5 deep boreholes located in the Mesozoic granite and sedimentary rock regions in Korea. Among them, the deepest testing depth was more than 920 m. In this paper, the major characteristics of the DHTS are introduced and also some results obtained from the high precision field tests in the deep and low permeable rock mass environment are briefly discussed.
        176.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        Background: The muscles associated with tension-type headache (TTH) are connected to the scalp fascia, which is firmly attached to the superciliary ridge of the frontal bone. However, there is a paucity of data on treatments for TTH that directly target the scalp fasciae. Objectives: We aimed to validate a new manual therapy to treat TTH by applying myofascial relaxation techniques to the scalp and to examine the changes in quality of life and headache characteristics after treatment. Design: pretest-posttest control group design study. Methods: Total 24 participants with TTH (10 males, 14 females) participated in the study. Manual therapy group (MT) received standard manual therapy and scalp myofascial release technique group (SMT) received scalp myofascial release technique twice per week for 4 weeks. Brief Pain Inventory (BPI) and Headache Impact Test (HIT) for quality of life, headache frequency, duration, and Visual Analog Scale (VAS) for intensity were assessed at the pre- and post-treatment. Results: There was a significant improvement within groups in headache frequency (MT P<.05, SMT P<.001), duration (MT P<.05, SMT P<.01), VAS (MT P<.01, SMT P<.001), HIT (MT P<.001, SMT P<.001), and BPI (MT P<.001, SMT P<.001) between the pre- and post-treatment. Group differences were significant for headache duration (P=.027), but the others were not. MT and SMT reduced the impact of headaches on daily life. Also Headache frequency, duration, intensity, and BPI were improved. Conclusion: MT and SMT reduced the impact of headaches on daily life. Also Headache frequency, duration, intensity, and BPI were improved. It has been suggested that both MT and SMT can be used as a non-invasive treatment to treat the TTH, and to improve the quality of life.
        4,000원
        177.
        2022.09 KCI 등재 SCOPUS 구독 인증기관 무료, 개인회원 유료
        To investigate L2 adolescent learners’ use of machine translation (MT), an MT error correction (EC) test was developed, based on the analysis of MT errors arising from translating the learners’ L1 of middle school EFL textbooks. Learners were also asked to report on their use of MT EC strategies on the EC task. Results indicated that mistranslated sentence and verb tense are the most difficult types of MT errors to correct. Furthermore, to resolve MT errors, guessing from context and literal translations were the two most frequently employed EC strategies. When multiple regression analysis was conducted to examine the contribution of EC strategies to the learners’ ability to correct errors, the mid proficiency learners’ reliance on literal translations and the low proficiency learners’ use of multiple EC strategies were positively associated with improved corrections of MT errors. The results of the study are discussed in light of how L2 learners need to develop competence for using MT in L2 writing.
        6,000원
        178.
        2022.09 KCI 등재 구독 인증기관 무료, 개인회원 유료
        ROK Navy intends to secure the Korean-type aircraft carrier in order to effectively prepare for various future security threats. In general, the Korean national competency is considered to be at the level of having an aircraft carrier, but it is unclear what scale aircraft carrier would be appropriate. In this study, the efficiency was evaluated through the relative comparison between national competency(national power, economic power) and the scale of aircraft carriers, and the optimal scale of the Korean-type aircraft carrier that could be acquired was presented. A DEA(Data Envelopment Analysis) model was applied to aircraft carriers(19 aircraft carriers in 11 countries) currently in operation and scheduled to be possessed in the world. As input variables, CINC(Composite Index of National Capability) and GDP(Gross Domestic Product), which are the most widely used as indicators of national and economic power, and as output variables, the full-load displacement, length, and width of aircraft carriers were selected. ARIMA(short-term within 5 years) and simple regression(long-term over 5 years) were used to estimate the future national competency of each country at the time of aircraft carriers acquisition. The relative efficiency score of the Korean-type aircraft carrier currently being evaluated is 1.062, and it was evaluated as small-scale aircraft carrier compared to the national competency. Based on Korean national competency, the optimal scale of the Korean-type aircraft carrier calculated by aggregating benchmark groups, is 58,308.1 tons of full-load displacement, 279.4m in length, and 68.3m in width.
        4,000원
        179.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, to develop and verify the Jeju-type groundwater thermal system design program, the energy consumption and system performance derived by input into the design program based on the load calculated on the demonstration site and the groundwater temperature were compared and analyzed with the actual measured values. The theoretical values ​​of energy consumption and heating and cooling COP ​​obtained through the Jeju-type groundwater thermal system design program were 11.24kW, 5.28 for heating, 13.31kW, 3.94 for cooling respectively. The measured values ​​of energy consumption and COP of the Jeju-type groundwater thermal system were 3967.2kW and 4.5, respectively. The error between the theoretical value and the measured value obtained through the design program is 0% and 2.39%, respectively. The errors that occur in the predicted values ​​and the actual values ​​are due to variables that are ignored in the system assumptions. If users consider errors and use it when designing groundwater thermal systems, they can estimate the cost of required drilling works, heat exchangers, and heat pumps and analyze economic feasibility.
        4,000원
        180.
        2022.08 KCI 등재 구독 인증기관 무료, 개인회원 유료
        In this study, numerical analysis is conducted to investigate the flow characteristics of a turning type flood gate fishway with various design factors. The shapes of the fishway are circular and rectangular type. Baffles are installed to reduce the velocity in the fishway, and the gap and rotational arrangement of the baffles are set as design factors. To reduce the maximum velocity, a cavity-shaped break region is installed to examine the flow characteristics according to the presence of the break region. As a result, in the condition where the shape of the fishway is rectangular, the outlet average flow velocity is larger than that in the circular condition. The highest flow velocity occurs when the baffle is rotated in 90-degree arrangement. As the baffle gap increases, the average velocity increases. The cavity-shaped break region creates a recirculation zone in the fishway, and as a result, shows a decrease in the maximum velocity of up to 5.8%.
        4,000원