This study was carried out to investigate the effect of W substitution on the precipitation behavior of χ and σ phases in super duplex stainless steel. The χ phase was precipitated at the interface of ferrite / austenite phases and inside the ferrite phase at the initial stage of aging. With an increase in the aging time, the volume fraction of the χ phase increased, and then decreased with the transformation from the χ phase to the σ phase. The σ phase was precipitated later than the χ phase, and the volume fraction of x phase increased with the increase in the aging time. The ferrite phase was decomposed into the new austenite (γ2) and σ phases by aging treatment. The decomposition of the ferrite phase into the γ2 and σ phases was retarded by W substitution for Mo. The volume fraction of the χ phase increased and that of the σ phase decreased due to W substitution. The χ and σ phases were intermetallic compounds, which had lower nickel concentration, and higher chromium, molybdenum, and tungsten concentrations. The χ phase has higher molybdenum and tungsten concentrations than those of the σ phase. The amounts of chromium and nickel in the χ and σ phases did not change, but these phases have higher concentrations of molybdenum and tungsten due to W substitution for Mo.
σ-VFe 금속간화합물에 대한 기계적 합금화(MA) 효과를 중성자 및 X선 회절법으로 조사하였다. MA 분말의 구조분석은 X선 회절(Cu-Kα) 린 중성자회절(HRPD, λ=1.835Å)을 이용하여 행하였다. σ-VFe화합물의 MA시 큰 구조변화가 관찰되었으며, MA 60시간의 경우 Fe-Fe 훤자분포는 unit cell에 30개의 원자를 포함하고 있는 σ상의 tetragonal구조에서 120˚C이상에서 안정하게 존재하는 α-(V,Fe) 고용체의 bcc 구조로 상변화함을 알 수 있었다. 또한 α-VFe 화합물에 대한 중성자 및 X선 회절패턴의 비교분석을 행하였으며 그 결과 σ상이 가지는 화학적 규칙성에 기인하는 (101)과 (111) 회절 피크가 중성자 회절에서 뚜렷하게 관찰됨을 알 수 있었다.