In this study, a high speed planing boat with 7.2 meters in length is developed as the beam larger about 10% by comparing with the general planing boat. The design speed of a boat is 30 knots (about 15.4 m/s) by using 150 hp outboard engine and the main material is FRP. The resistance performance related to the free running attitude as trim and sinkage is discussed and the wave patterns are observed to clear the relationship between the performance and wave characteristics by model test. The turning circle is estimated by Lewandowski´s equation. The results show that not only the wave pattern but also the free running attitude of the boat have the strong influence on a resistance performance. The boat needs smaller engine power and has more stable running attitude because of large sinkage and small variation of trim due to the large area for the lift force and light weight.
In the present study, numerical algorithms for a high-speed planing ship were taken into account. The Rankine source panel method was applied to predict a flow phenomena around a ship. The Kelvin type free surface boundary condition and the exact nonlinear free surface boundary condition were compared to predict the wave system generated by the ship and the trim and sinkage state of the ship also were introduced. In order to deal with complex geometries of the planing ship the panel cutting method was adopted. The developed numerical analysis algorithm were applied to the R/V Athena ship and the numerical results were compared with the experimental results.