최근 전 세계적인 기후 변화에 따라 국지성 폭우 및 설계예상 수준을 뛰어넘는 강우량 등으로 인하여 도로 및 비탈면의 유실 피해가 증가하고 있다. 이러한 유실에 따른 재해가 발생했을 때, 신속한 복구를 위 한 복구장비의 접근이 쉽지 않은 경우가 많다. 따라서 본 연구에서는 최소한의 장비 및 시공인력으로 안 전하고 신속한 복구기술 개발의 일환으로, 도로 및 비탈면 유실부에 골재망을 활용하여 골재 채움을 실시 하고, 고흐름도 모르타르로 골재 내부공극을 충전하는 형태의 복구기술 개발의 실험적 연구를 수행하였 다. 그림 1은 최근 10년간 자연재해에 의한 피해 발생 비용을 나타내고 있으며, 그림 2는 도로유실에 따 른 복구 전경을 나타내고 있다.
그림 3과 같이 골재 사이사이 공극을 충전할 수 있도록 고흐름도 모르타르의 배합을 수행하였으며, 고 흐름도 모르타르의 컨시스턴시 실험을 통하여 충분한 충전성능을 확보하는 것을 알 수 있었다. 또한 그림 4와 같이 골재투입을 위한 골재망을 활용하여 복구 적용 형태에 따라 유동적으로 적용가능한 골재 투입 기술을 개발하였다. 본 연구에서는 고흐름도 모르타르를 활용한 골재충전 콘크리트의 압축강도를 KS F2405에 의거하여 실험을 수행하였다.
PURPOSES: As a part of our research into repair techniques for roads that have collapsed as a result of a natural disaster, this study set out to find the optimum mix proportion for gravels to be used to restore a damaged area.
METHODS: This study considered flow and strength-development characteristics. The experimental variables were the W/C ratio, the usage of the admixture, the types of cement, and the quantity of fine aggregate over three different experimental stages. The compressive strength was measured at 12 hours, one day, three days, and seven days.
RESULTS : The flow varied with the amount of fine aggregate and the use of a high-range water-reducing (HRWR) admixture. The compressive strength also varied with respect to the type of cement and the W/C ratios. The strength satisfied the expected requirement of 21 MPa after one day, provided the mix proportion was appropriate.
CONCLUSIONS: A gravel-filling high-flow cement-based mortar exhibited strength and consistency with a W/C ratio in the range of 0.40 to 0.45, assuming the use of HRWR at 0.5 to 0.7% and a fine aggregate/cement ratio of 1.0 to 1.5.
본 연구에서는 도로유실부 긴급복구를 위한 고흐름도 모르타르의 압축강도 특성을 분석하였다. 실험에 사용된 잔골재는 강원도 삼척 인근에서 채취하였으며, 사용된 잔골재의 입도분포는 그림 1과 같다. 또한, 조기강도 발현의 목적으로 1종 조강형 시멘트를 사용하였다. 표 1은 사용 배합표를 나타내고 있으며, 재 령 12시간, 재령 1일, 재령 3일 및 재령 7일에 변수별 압축강도를 측정하였다.