온실가스의 대기 방출에 기인된 지구온난화는 범세계적인 주요 문제로 다루어지고 있으며, 이에 대한 많은 대책 중의 하나로 광물탄산화가 관심을 받고 있다. 본 연구에서는 다양한 조건에서 경량 기포콘크리트를 이용한 광물탄산화 실험을 수행하여 이들의 탄산화 재료로써의 가능성을 파악코자 하였다. 경량 기포콘 크리트는 광물탄산화의 주요성분인 CaO의 함량이 약 27wt.%에 달하여 탄산화를 위한 유망한 재료로 간주 할 수 있다. 이 함량 모두가 광물탄산화에 참여한다는 가정 하에 계산된 CaCO3 함량은 약 40wt.%이다. 경량 기포콘크리트로부터 광물탄산화 반응의 최적 조건은 단일상의 방해석이 형성된 고액비 0.01, 반응시간 180 분이며, 그리고 단일상 여부와 무관하게 즉 방해석과 바테라이트가 공존하는 경우, 고액비 0.06, 반응시간 180 분인 것으로 확인된다. 고액비 0.06이상인 경우, 방해석과 더불어 바테라이트가 공존하였으며, 이는 광물탄산화에 따라 초기에 형성된 바테라이트가 점차 방해석으로 상전이 된 데 반하여 후기에 형성된 바테라이트는 반응 종료 시까지 방해석으로 상전이 되지 못한데 원인이 있는 것으로 해석된다.
This study assesses greenhouse gas evolution from construction-material manufacturing facilities and estimates the potential reduction of these gases via the future massive sequestration of carbon dioxide. The scope of the evaluation specifically targets the global-warming potential in terms of kg-CO2 equivalent/tonnage industrial waste. Life cycle assessment (LCA) is a method to quantitatively analyze the input and output of a specific material resource during its life cycle from raw-material acquisition to final disposal as well as its environmental effect(s). LCA comprises four steps: its objective and definition of the scope, the entire life-cycle analysis list, an evaluation of its effects, and life-cycle analysis. The annual inflow of petro-ash reaches 300,000 tons, and this material is transported via screw-driving systems. The composition of the petro-ash is 1.2% volatile compounds, 6.8% fixed carbon and 92% ash contents. A total of 38,181,891 Nm3/yr of carbon dioxide is sequestrated, which is equivalent to 75,000 tons per annum and 304.5 kg/ton of petro-ash waste, with 250 kg/ton of the latter sequestrated as calcium carbonate. The final analysis on the effect of one ton of petro ash in construction materials showed 27.6 kg-CO2 eq emission. According to the final LCA analysis, only 27.6 kg-CO2 eq/ton was emitted by the petro-ash that was used in construction materials if CO2 fixation during carbonate mineralization was considered, where -250 kg-CO2 eq/ton positively contributed to the LCA. In the future, commercial-scale process modification via the realization of continuous processes and the more efficient reduction of carbon dioxide is anticipated.
간접 탄산화(indirect method) 및 양이온 공급원으로 사문암(serpentinite)을 이용하여 광물탄산화 연구를 수행하였다. 이산화탄소와 사문암 내 알칼리 토금속(칼슘과 마그네슘)의 탄산화 반응을 통해 고 순도의 탄산칼슘과 탄산마그네슘을 합성할 수 있었다. 마그네슘 추출을 위해 황산암모늄을 사용하였고 Mg 추출률 향상을 위해 황산암모늄 농도, 반응온도 및 사문암과 추출 용매의 비(고액비) 등 여러 반응 변수를 검토하였다. 본 연구로부터 2 M 황산암모늄을 사용하여 300℃ 반응온도에서 고액비(5 g/66 mL) 실험을 진행한 경우 약 80 wt% 이상의 Mg를 얻을 수 있었다. Mg 추출률은 추출 용매 농도 및 반 응온도와 비례하여 증가하였다. 사문암의 Mg 추출 과정에서 얻어진 암모니아(NH3)는 회수하여 탄산화 과정에서 필요한 pH 복원제(pH swing agent)로 활용하였다. 본 연구를 통해 약 1.78 M 암모니아를 회 수할 수 있었고 지구화학 모델링을 통해 사문암의 Mg 추출 과정의 핵심 단계를 해석하고자 하였다.
Mineral carbonation using alkali industrial waste is an eco-friendly, economic technology used not only to reuse waste but also to store carbon dioxide. Alkali waste such as slag, cement waste, and coal ash has been mainly used as a raw material required for the technology. Many studies have been conducted to find optimal conditions for Ca/Mg extraction and carbonation with various extraction solvents under different temperatures, pressures of carbon dioxide, ratios of liquid to solid, and reaction times. Furthermore, in order to secure economic feasibility, there have been recent attempts to proceed the mineral carbonation at the room temperature and atmospheric pressure, to recover highly pure carbonate salts, and to reuse the extraction solvent. We expect that future researches will be in quest of economically storing as much carbon dioxide as possible by developing raw materials and carbonation technologies which provide high carbonation efficiency. In this article, we have reviewed recently published domestic and international research papers and then classified them according to the kind of industrial waste and the carbonation technology (direct and indirect carbonations).