검색결과

검색조건
좁혀보기
검색필터
결과 내 재검색

간행물

    분야

      발행연도

      -

        검색결과 5

        1.
        2022.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : In this study, surface distress (SD), rutting depth (RD), and international roughness index (IRI) prediction models are developed based on the zones of Incheon and road classes using regression analysis. Regression analysis is conducted based on a correlation analysis between the pavement performance and influencing factors. METHODS : First, Incheon was categorized by zone such as industrial, port, and residential areas, and the roads were categorized into major and sub-major roads. A weather station triangle network for Incheon was developed using the Delaunay triangulation based on the position of the weather station to match the road sections in Incheon and environmental factors. The influencing factors of the road sections were matched Based on the developed triangular network. Meanwhile, based on the matched influencing factors, a model of the current performance of the road pavement in Incheon was developed by performing multiple regression analysis. Sensitivity analysis was conducted using the developed model to determine the influencing factor that affected each performance factor the most significantly. RESULTS : For the SD model, frost days, daily temperature range, rainy days, tropical nights, and minimum temperatures are used as independent variables. Meanwhile, the truck ratio, freeze–thaw days, precipitation days, annual temperature range, and average temperatures are used for the RD model. For the IRI model, the maximum temperature, freeze–thaw days, average temperature, annual precipitation, and wet days are used. Results from the sensitivity analysis show that frost days for the SD model, precipitation days and freeze–thaw days for the RD model, and wet days for the IRI model impose the most significant effects. CONCLUSIONS : We developed a road pavement performance prediction model using multiple regression analysis based on zones in Incheon and road classes. The developed model allows the influencing factors and circumstances to be predicted, thus facilitating road management.
        4,300원
        2.
        2019.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: This study aims to contribute to a better road environment, which can result in accident reduction from two-wheeled vehicles, by analyzing factors affecting the two-wheeled vehicles’ accident severities in Incheon Metropolitan City. METHODS: In this study, the two-wheeled vehicles’ accident severity was classified into four categories (fatal injury, serious injury, minor injury, and injury report) as a dependent variable, and 97 independent variables out of 14 categories were considered to construct an ordered probit model. To determine the factors affecting accident severity, the statistical package LIMDEP was used. RESULTS: Among the variables used in the analysis, variables related to accident occurrence date (first quarter), region (8-district), accident type (passing the edge of the road of the vehicle for a pedestrian accident, fixed object collision, and overturn of vehicle-only accident), violation type (unobtained safety distance, failure to perform safe driving, violation of intersection driving, and violation of others), the type of road (at the intersection, near the intersection, at the crosswalk, near the crosswalk, etc.), gender of assailant (male), vehicle of victim (pedestrian and motorcycle), and age of victim (under 20) were found to have a statistically significant effect on the severity of the accident. CONCLUSIONS: The variables related to accident type (fixed object collision and overturn of vehicle-only accident), gender of assailant (male), and vehicle of victim (pedestrian and motorcycle) have turned out increasing the accident severity. In addition, accident occurrence for two-wheeled vehicles is more diverse and vulnerable to damage than automobile accidents. Therefore, it is time to recognize the seriousness of two-wheeled vehicle accidents and to improve the environment and systems for safe driving.
        4,000원
        3.
        2018.04 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES: The purpose of this study is to develop a crash prediction model at signalized intersections, which can capture the randomness and uncertainty of traffic accident forecasting in order to provide more precise results. METHODS: The authors propose a random parameter (RP) approach to overcome the limitation of the Count model that cannot consider the heterogeneity of the assigned locations or road sections. For the model’s development, 55 intersections located in the Daejeon metropolitan area were selected as the scope of the study, and panel data such as the number of crashes, traffic volume, and intersection geometry at each intersection were collected for the analysis. RESULTS: Based on the results of the RP negative binomial crash prediction model developed in this study, it was found that the independent variables such as the log form of average annual traffic volume, presence or absence of left-turn lanes on major roads, presence or absence of right-turn lanes on minor roads, and the number of crosswalks were statistically significant random parameters, and this showed that the variables have a heterogeneous influence on individual intersections. CONCLUSIONS : It was found that the RP model had a better fit to the data than the fixed parameters (FP) model since the RP model reflects the heterogeneity of the individual observations and captures the inconsistent and biased effects.
        4,000원
        4.
        2015.12 KCI 등재 구독 인증기관 무료, 개인회원 유료
        PURPOSES : This study tries to develop the accident models of 4-legged signalized intersections in Busan Metropolitan city with random parameter in count model to understanding the factors mainly influencing on accident frequencies. METHODS: To develop the traffic accidents modeling, this study uses RP(random parameter) negative binomial model which enables to take account of heterogeneity in data. By using RP model, each intersection’s specific geometry characteristics were considered. RESULTS : By comparing the both FP(fixed parameter) and RP modeling, it was confirmed the RP model has a little higher explanation power than the FP model. Out of 17 statistically significant variables, 4 variables including traffic volumes on minor roads, pedestrian crossing on major roads, and distance of pedestrian crossing on major/minor roads are derived as having random parameters. In addition, the marginal effect and elasticity of variables are analyzed to understand the variables’impact on the likelihood of accident occurrences. CONCLUSIONS :This study shows that the uses of RP is better fitted to the accident data since each observations’specific characteristics could be considered. Thus, the methods which could consider the heterogeneity of data is recommended to analyze the relationship between accidents and affecting factors(for example, traffic safety facilities or geometrics in signalized 4-legged intersections).
        4,000원
        5.
        2018.12 KCI 등재 서비스 종료(열람 제한)
        Since climate change increases the risk of extreme rainfall events, concerns on flood management have also increased. In order to rapidly recover from flood damages and prevent secondary damages, fast collection and treatment of flood debris are necessary. Therefore, a quick and precise estimation of flood debris generation is a crucial procedure in disaster management. Despite the importance of debris estimation, methodologies have not been well established. Given the intrinsic heterogeneity of flood debris from local conditions, a regional-scale model can increase the accuracy of the estimation. The objectives of this study are 1) to identify significant damage variables to predict the flood debris generation, 2) to ascertain the difference in the coefficients, and 3) to evaluate the accuracy of the debris estimation model. The scope of this work is flood events in Ulsan city region during 2008-2016. According to the correlation test and multicollinearity test, the number of damaged buildings, area of damaged cropland, and length of damaged roads were derived as significant parameters. Key parameters seems to be strongly dependent on regional conditions and not only selected parameters but also coefficients in this study were different from those in previous studies. The debris estimation in this study has better accuracy than previous models in nationwide scale. It can be said that the development of a regional-scale flood debris estimation model will enhance the accuracy of the prediction.