PURPOSES : Most Red bus1) (metropolitan bus) routes to Seoul need to increase supply by increasing the number of buses and number of trips because of the high level of congestion in buses, which also accommodate standing passengers. Due to the recent Itaewon disaster, people have been banned from standing on Red buses due to concerns over the excessive use of public transportation, adding to the inconvenience of passengers, such as increased travel time. However, some routes incur a large deficit owing to excess vehicles and trips relative to the number of passengers, thereby increasing the financial burden of Gyeonggi. Therefore, in this study, a reasonable operation plan is required based on the demand on Red bus routes. METHODS : Using accurate data from smart cards and a Bus Management System, the model was applied to consider bus usage, bus arrival distribution, waiting time, and operating conditions, such as actual bus usage time and bus dispatch interval. RESULTS : As a result of applying the model, buses between 7:00 and 9:00 and 16:00 and 18:00 were very crowded because of standing passengers, and passenger inconvenience costs decreased because of the longer waiting times for bus stops in Seoul. Currently, there are 15 buses in operation for the red bus G8110. However, considering the annual transportation cost, transportation income, and support fund limit, up to 12 buses can be operated per day. The G8110 route was analyzed at 23.6 million won for passenger discomfort cost, as 15 buses operated 97 times per day on weekdays. However, when establishing optimal scheduling, 12 buses per day operated 75 times per day, with a 19.7 million won passenger discomfort cost. CONCLUSIONS : As all red buses run from the starting point, passengers at the bus stop wait for more than an hour before entering Seoul, and the passenger discomfort cost of using demand-responsive chartered buses decreases only when commuting from Jeongja Station and Namdaemun Tax Office stops. Currently, many people commuting from Gyeonggi-do to Seoul are experiencing significant inconvenience owing to the ban on standing in Red buses; a suitable level of input can be suggested for the input and expansion of chartered buses.
PURPOSES : This study proposes an index for analyzing mobility based on smartcard and taxi data to evaluate imbalances in public transit.
METHODS : The proposed mobility index is calculated based on the difference between the mobility indexes of public transit and taxis using the variables of the in-vehicle time, waiting time, and driving ratio. For a more detailed analysis, the distances are divided into short distances, medium distances, and long distances.
RESULTS : Public transit mobility indexes are generally evenly distributed, but the taxi mobility indexes are located in the largest legend. When comparing the respective mobilities of public transit and taxis, many areas with a high mobility of taxis (similar to the distribution) exist, especially in the outskirts such as Dobong-gu, Nowon-gu, Gangdong-gu, Guro-gu, Geumcheon-gu, and Eunpyeong-gu. On average, the mobility of public transit according to the distance is smaller in a short distance and higher in a long distance.
CONCLUSIONS : The results demonstrate the use of the proposed index for analyzing the basic statuses of complementary indexes for evaluating public transit imbalances. In the future, more detailed results (including socioeconomic variables corresponding to the grid areas) should be studied to identify the impacts of the mobility index.