본 실험에서는 α-Al2O3 지지체에 무전해도금을 이용하여 Pd-Ag-Cu 분리막을 제조하였다. Pd, Ag, Cu는 각각 무 전해도금을 통해 지지체 표면에 코팅하였고, 합금의 형성을 위해 무전해도금 중간에 H2, 500°C의 조건에서 18 h 동안 열처리 를 진행하였다. 이를 통해 제조된 Pd-Ag-Cu 분리막은 SEM을 통해 표면을 관찰하였으며, Pd 분리막의 두께는 7.82 μm, Pd-Ag-Cu 분리막의 두께는 3.54 μm로 측정되었다. EDS와 XRD 분석을 통해 Pd-Ag-Cu 합금이 Pd-78%, Ag-8.81%, Cu-13.19%의 조성으로 형성된 것을 확인하였다. 기체투과 실험은 H2 단일가스와 H2/N2 혼합가스에서 실험을 진행하였다. H2 단일가스에서 측정한 수소 분리막의 최대 H2 flux는 Pd 분리막의 경우 450°C, 4 bar에서 74.16 ml/cm2·min이고, Pd-Ag-Cu 분리막의 경우 450°C, 4 bar에서 113.64 ml/cm2·min인 것을 확인하였고, H2/N2 혼합가스에서 측정한 separation factor의 경우 450°C, 4 bar에서 각각 2437, 11032의 separation factor가 측정되었다.
본 연구에서는 zeolitic imidazolate framework-9 (ZIF-9)을 합성하고 poly(ether-b-amide)-1657 (Pebax-1657) 내에 함량을 달리하여 Pebax/ZIF-9 혼합막을 제조한 다음 단일기체 (N2, CO2)를 투과하여 혼합막에 대한 기체 투과 특성을 조사하 였다. 순수 Pebax 막 내에 혼입되는 ZIF-9 함량이 증가함에 따라 N2 투과도는 점차 감소하고, CO2 투과도는 Pebax/ZIF-9 3 wt% 혼합막까지 증가하다가 그 이후의 함량에서는 감소하였다. 그리고 혼합막들 중 Pebax/ZIF-9 3 wt% 혼합막은 극성 기체 인 CO2에 대해 gate-opening 현상이 일어나면서 선택적으로 CO2를 받아들여 가장 높은 선택도 69.3을 보였다. 또한 CO2 투 과도와 CO2/N2 선택도가 모두 증가하여 Robeson upper-bound에 가장 근접하는 결과를 얻었다.
기체투과막 기술을 이용하여 가축분뇨 폐기물 등으로부터 암모니아성 질소를 효과적으로 회수할 수 있다. 이는 폐기물 내 암모니아 기체가 폐기물에 함침된 기체투과막의 미세공극을 투과하여 막반대편에 도달하게 된다. 투과된 암모니아 기체분자는 막 반대편에 존재하는 용액 내 황산 등 산에 의해 포획 및 회수된다. 막 유입부 내 암모니아성 질소 제거 효과를 높이기 위해서는 우선 유입 폐기물 내 pH를 높게 유지해야 하는데 pH 상승에 필요한 염기성 약품 투입비용이 문제가 될 수 있다. 기존 연구에서는 보다 저렴한 소석회 투입하거나 폭기 혹은 질산화억제를 통해 높은 pH를 효과적으로 유지시키는 방 안이 거론되고 있다. 한편 암모니아성 질소 회수에 쓰이는 기체투과막의 재질은 적절한 내열성이나 내화학성 이외에도 소수 성을 띈다는 특징이 있으며 이를 통해 막기공을 통해 암모니아 기체를 선택적으로 투과시킬 수 있다. 향후 연구에서는 다양 한 성상을 가진 현장 폐기물을 이용하여 실증 Test를 수행하고 이를 기반으로 최적 설계/운전 조건 규명 및 경제성 제고 방안 을 수립하여야 한다.
본 연구에서는 순수 PEBAX® 분리막의 투과특성을 향상시키기 위해 개질된 fumed silica 나노입자를 혼합한 MMMs (mixed matrix membranes) 타입의 PEBAX®/fumed silica 하이브리드 분리막을 제조하고, 이산화탄소와 메탄의 투과 특성을 측정하였다. PEBAX®-1657/TS-530 하이브리드 소재의 경우, FT-IR과 XRD 분석을 통해 PEBAX® 고분자에 무기입자 가 비교적 잘 분산되었음을 확인하였다. 기체투과특성 측정 결과 TS-530을 10 wt% 혼합한 분리막의 경우, 순수 PEBAX® 분 리막과 비교하여 투과도 계수는 약간 감소하나 이상분리인자는 약간 증가하였다. 이는 비투과성 silica 입자의 도입에 따라 기 체 확산 경로가 줄어들고, 경로의 비틀림이 증가하기 때문으로 볼 수 있다. TS-530 함량이 증가함에 따라서는 투과도 계수와 이상분리인자 간에 전형적인 trade-off 경향을 보였다. 이는 TS-530 함량이 증가함에 따라 결정성이 감소하고, 고분자 사슬 간 충전 억제에 따라 자유부피가 증가하기 때문으로 볼 수 있다. 또한 무기입자 함량 증가에 나노간극의 형성 가능성이 높아지 고, 이에 따라 기체 확산도가 커지기 때문으로 판단된다.
그래핀옥사이드는 우수한 물리적 특성 및 가공성으로 멤브레인 소재로 각광받고 있다. 특히, 이론적 예측과 실험 적인 접근을 통해 그래핀옥사이드의 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공 생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층구조 등 멤브레인 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀 졌다. 또한 그래핀옥사이드에서의 분자 투과 거동은 적층된 그래핀옥사이드 사이의 채널 크기에 따라 영향을 받는다는 것이 발견되었다. 그 후, 이러한 특성을 응용하여 그래핀옥사이드를 멤브레인 소재로 활용하기 위해 많은 연구가 집중적으로 진행 되고 있다. 본 총설에서는 그래핀옥사이드의 고유 특성을 기반으로 멤브레인 분야로의 응용 가능성에 대하여 논하고자 한다.
본 연구에서는 비용매 유도 상분리법을 이용하여 폴리에테르이미드 계열의 중공사형 분리막을 제조하였다. 제조 된 중공사막의 모폴로지 조절을 위해 첨가제로는 THF, Ethanol, LiNO3를 사용하였다. 또한 높은 수소분리막의 개발을 위해 모폴로지와 기체투과성능을 특성평가를 통해 방사조건을 최적화하였다. 그 결과 THF의 함량이 증가할수록 수소/이산화탄소 선택도가 증가하였다. 하지만 trade-off 관계로 인하여 투과율은 감소하였다. Ethanol을 첨가하였을 때는 finger-like 구조를 나타냈고, LINO3를 첨가하였을 때 Sponge 구조를 보였다. 특히, PDMS 코팅층을 최적화한 중공사막의 경우, 투과율은 40 GPU, 수소/이산화탄소 선택도는 5.6을 나타냈다.
본 연구에서는 PEBAX2533에 합성된 GO와 PEI-GO의 함량을 달리 첨가하여 혼합막을 제조하고 N2와 CO2의 투과 특성을 연구하였다. PEBAX/GO 혼합막의 N2와 CO2 투과도는 전체적으로 GO 함량이 증가할수록 감소하였고, GO 0.3 wt%에서 가장 높은 CO2/N2 선택도 58.9를 보였다. 그리고 PEBAX/PEI-GO 혼합막에서 N2 투과도는 PEI-GO 함량이 증가함에 따라 감소하였고, CO2 투과도는 PEI-GO 함량에 따라 다른 경향을 보였으며 전체적으로 PEBAX/GO 혼합막보다 더 높은 CO2/N2 선택도를 보였다. 특히 PEI-GO 0.3 wt%는 혼합막들 중 가장 높은 CO2/N2 선택도인 73.5를 보이며 Robeson upper bound 위에 위치하는 긍정적인 결과를 얻었다. 이는 본연의 GO 구조에 의한 molecular sieving channel 효과와 CO2에 친화성이 있는 GO의 구조 내에 존재하는 작용기 그리고 GO를 PEI로 개질함으로써 PEI에 결합되어 있는 amine에 의한 효과가 함께 작용했기 때문으로 생각된다.