This study describes the effects of polyurethane/loess powder (PU/LP) nanofiber thin films composite produced from electrospun for absorption volatile organic compounds (VOCs) from air. Environmental issue has become a focus with improving people's living quality. The VOCs are one of the factors that affect the environmental safety. So, in order to improve the environment and safety for people, many air cleaning techniques have been investigated. One of the methods is nanofiber filtration technology. In this study, the PU nanofiber thin film has been studied that it has the adsorption of VOCs capacity, and LP nanoparticles (NPs) can be used as an additive to load into PU nanofiber thin film by electrospinning. For studying PU/LP nanofiber thin films's absorption of VOCs capacity, 4 samples (0, 10, 30, and 50 wt% LP with respect to PU) were manufactured, respectively. The results show that PU composite mats containing 30 wt% LP NPs has the highest VOCs absorption capacity, and the adsorption capacity for toluene was the highest compared to benzene and chloroform.
In order to improve the lithium ion battery's performance, the carbon nanofibers were introduced to the anode electrode fabricated with natural graphite particles. The influence of structural adjustment of the particles by the introduction method of carbon nanofibers and the content of carbon nanofibers on the electrical property and charge/discharge characteristics of the electrode were investigated. The electrode fabricated with the mixture of 10 wt% of carbon nanofibers grown separately and 90 wt% of graphite particles showed an excellent discharge capacity of 400 mAh/g and the improved cycle performance. The improved performance could be explained by that the carbon nanofibers shortened and uniformly distributed on the surface of graphite particles by ball milling increased the stability for the intercalation/deintercalation of lithium ion and increased the electrical conductivity due to the closed packing between graphite particles.